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Abstract

These lecture notes follow a talk given for the third semester of
Quantum Field Theory (8.325) at MIT. In these notes, we will in-
troduce TT deformation as a deformation of conformal field theories
(CFTs). We will briefly discuss the motivation behind this particularly
simple and well-behaved deformation before discussing a simple exam-
ple with a miraculous result. We will then show that TT deformed
theories are exactly solvable, and derive equations regarding the flow
of deformed theories. As a bonus, we will discuss the relationship
between TT deformation, random geometry, and gravity.
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1 Motivation

In these notes, we will be discussing TT deformation, which is a systematic
procedure for deforming conformal field theories (CFTs). We will closely
follow the discussion of [1]. The natural first question is “why the heck
should we care about CFTs?”

The reason we care about studying the properties of CFTs (and their de-
formations) does not stop at their beautifully simple and constrained math-
ematical structure. In fact, studying CFTs allows us to gain some intuition
for more general quantum field theories (QFTs)! In particular, it has be-
come fashionable to think about the vast majority of well-defined QFTs as
being renormalization group (RG) flows between two fixed points, in the
deep UV and IR of the theory. These fixed points are CFTs. The easy,
albeit lazy way to argue this is to notice that when we take the pure UV
and pure IR limits, we have removed any extrinsic scales from the problem.
In the deep IR of the field theories with which we are most familiar, we
either have free field theories, in the case of a massless IR spectrum, or the
theory which contains only the vacuum, if we have a mass gap. There are
more exotic examples, but they generally follow this trend of falling to an
IR fixed point. In the UV, on the other hand, our simplest example is an
asymptotically free non-abelian Yang-Mills theory. General theories follow
the same trend: (quoting Mark Srednicki) a theory will be well defined in
the UV if it is asymptotically free, so that it avoids any Landau poles or
other pathology, and flows to a UV fixed point in which the beta functions
vanish.

We will be concerned specifi ally with 2D CFTs. The strong constraints
on 2D CFTs produce a very rich mathematical structure which makes them
excellent playgrounds for study, and allows us to discover exact results. The
latter property will become important for us, and will be preserved even as
we deform away from the CFT (if we do so carefully).

Following this long walk for a short drink of water, it seems fairly clear
that as good quantum field theorists, we should be motivated to study CFTs!
The second question we must address is “why the heck should we care about
TT deformation?”, and for that matter, “what the heck is TT deformation?”

TT deformation is a method of deforming CFTs in the IR to produce
QFTs which flow to a CFT in the UV. We have not found a full proof
that the TT deformed theories flow to CFTs in the UV, but in the trivial
example we explore this behavior will emerge. This procedure emerged
through Zamolodchikov’s study of RG flows between the tricritical fixed
point and the Ising fixed point of the Ising model [2]. One of the most
important features of TT deformed theories is that we can make exact and
non-perturbative statements about their spectra (as we will see) and their
partition functions (as we will not see). TT deformed theories can also
emerge through coupling QFTs to random geometry, and more recent work
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has proposed that TT deformed theories may emerge when a CFT is coupled
to certain modified theories of gravity in two dimensions.

We have learned that CFTs are a beautiful place to start learning about
QFT in greater generality, and our interest has been piqued by the tanta-
lizing prospect of exact results in TT deformed QFTs. Without any further
ado, let’s begin!

2 Basic Setup

The T of TT deformation is the same T as the T of the stress-energy tensor.
To begin, let’s recall the stress tensor which we derive with the usual Noether
procedure:

Tij =
∂L

∂(∂iφa)
∂jφa − gijL (2.1)

Let us then define our infinitesimally TT deformed Lagrangian by

L(t+δt) − L(t) = δtdet(T
(t)
ij ) (2.2)

That is, we flow through theory space in a manner determined by the stress
energy tensor. Perhaps more useful is the differential equivalent of the above
deformation

∂tL(t) = det(T
(t)
ij ) (2.3)

As we found in class, from cross-ratios all the way to conformal blocks,
it can often be very helpful to work in complex coordinates. Our case will
be no exception. Let us define in the usual way

z = x+ iy, z̄ = x− iy (2.4)

Of course, it naturally follows that

∂z , ∂ =
1

2
(∂x − i∂y), ∂z̄ , ∂̄ =

1

2
(∂x + i∂y) (2.5)

which we may easily derive using the fact that vectors transform under a
change of coordinates with the Jacobian matrix

1

2

(
1 −i
1 i

)
with the first column representing the x coordinate, the second column the
y coordinate, the first row the z coordinate, and the second row the z̄ coor-
dinate. Using this Jacobian matrix, it is similarly simple to derive the form
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of the stress-energy tensor in the new coordinates:

Tzz =
1

2

∂L
∂(∂̄φa)

∂φa = ∂zx
i∂zx

jTij =
1

4
(Txx − Tyy − 2iTxy) (2.6)

Tz̄z̄ =
1

2

∂L
∂(∂φa)

∂̄φa =
1

4
(Txx − Tyy + 2iTxy) (2.7)

Tzz̄ =
1

4

(
∂L

∂(∂φa)
∂φa +

∂L
∂(∂̄φa)

∂̄φa

)
− 1

2
L =

1

4
(Txx + Tyy) (2.8)

which are simple computations which we leave as an exercise.
Let’s not get too off track – we care mainly about the determinant of

the stress energy tensor! In the new coordinates then, we should also notice
that

det(Tij) = TxxTyy − T 2
xy = −4(TzzTz̄z̄ − T 2

zz̄) (2.9)

3 A Small Miracle

We are ready for our simplest possible example. Let us start with a free,
massless scalar, so that we have an IR CFT of the form

L =
1

2
∂iφ∂

iφ = 2∂zφ∂z̄φ = 2∂φ∂̄φ (3.1)

Now let us deform this theory. The result will appear somewhat miraculous,
and will elucidate several of the properties which appear in more general TT
deformations.

The original procedure for deforming this theory involved trying a small
deformation away from the CFT, with deformation parameter δt, repeating
the process, and solving a recursion relation. We will take advantage of
these bold efforts by proposing the ansatz

L(t) =
1

t
F (t∂φ∂̄φ) (3.2)

It is clear then that the deformation and F obey the simple relation

∂tL(t) = − 1

t2
F (t∂φ∂̄φ) +

∂φ∂̄φ

t
F ′(t∂φ∂̄φ)

= −4(TzzTz̄z̄ − T 2
zz̄)

where in the first equality we simply take the derivative of Equation 3.2, and
in the second line we set this equal to the determinant of the stress-energy
tensor, detT . To proceed, we find the components of the stress-energy tensor
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using the expressions in our earlier setup:

2Tzz =
∂L
∂(∂̄φ)

∂φ = F ′(t∂φ∂̄φ)(∂φ)2

2Tz̄z̄ = F ′(t∂φ∂̄φ)(∂̄φ)2

2Tzz̄ =
1

2

(
∂L

∂(∂φa)
∂φa +

∂L
∂(∂̄φa)

∂̄φa

)
− L

= F ′(t∂φ∂̄φ)∂φ∂̄φ− 1

t
F (t∂φ∂̄φ)

By equating the derivative of the Lagrangian with respect to the flow
parameter, t, and the determinant of the stress-energy tensor, we arrive at
the straightforward equation

2F ′(x)F (x)x− F (x)2 = −F (x) + xF ′(x) (3.3)

with the straightforward solution

F (x) =
1

2

(√
1 + 8x− 1

)
(3.4)

L(t) =
1

2t

(√
1 + 8t∂φ∂̄φ− 1

)
(3.5)

This is odd. We have a square root, which we do not usually see in our
Lagrangians, and while it is clear that the limit t→ 0 recovers our original
free CFT, it is difficult to make sense of the physics of this result. However,
let us march ahead, damning the torpedoes, and write

~X = (x, y,
√

2tφ) (3.6)

so that, for example

∂a ~X · ∂b ~X =

(
1 + 2t(∂xφ)2 2t∂xφ∂yφ

2t∂xφ∂yφ 1 + 2t(∂yφ)2

)
(3.7)

Notice now that this seemingly contrived construction leads us to a remark-
able result

L(t) =
1

2t

(√
det(∂a ~X · ∂b ~X)− 1

)
(3.8)

This is precisely the Nambu-Goto Lagrangian (in static gauge) for a rela-
tivistic bosonic string, with tension ∼ 1/t. Remarkable! This non-locality
begins to make some physical sense – it emerges from the physics of strings,
which are after all non-local objects.

This example is instructive for many reasons. The ansatz we presented
above may actually be useful in deforming similar models, we gained a sense
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of the flavor of deformed theories, and we saw strange non-local physics and
extended objects emerge as we deformed away from our free CFT. These
final features also hold in deformations of more general IR CFTs, and hint
towards the connection between TT and gravity.

However, the bosonic string took some time to quantize, historically, and
it seems that staring with more complicated IR CFTs will only make our jobs
in the deformed theories more difficult! This is quite intimidating. However,
we will see in our next section that there is no reason to fear, and that these
apparent difficulties cannot not stop us from making non-perturbative, exact
statements about deformed theories.

4 A Large Miracle

To address the intimidating difficulties referenced at the end of the last
section, let us begin on a CFT on a cylinder of radius R. We will perturb
the CFT by a composite operator, and therefore might worry about their
point splitting. In other words, we might worry that we perturb by the
operator

lim
v→w

(Tzz(v)Tz̄z̄(w)− Tzz̄(v)Tzz̄(w))

and that singularities in the OPE may emerge as v → w.
Let us lay these fears to rest. In a CFT, we have

〈Tij(x)Tkl(0)〉 =
1

x2d

(
1

2
(IikIjl + IilIjk)−

1

d
δijδkl

)
Iij = δij −

2xixj
x2

Using this expression, it is straightforward to evaluate the determinant

1

2
εijεkl〈T ik(x)T jl(0)〉 ∼ d− 2

x2d
(4.1)

Though singularities do indeed emerge when d 6= 2, in our scenario, we have
d = 2 and nothing to worry about.

A similar feature also emerges in our deformed theories, though we do
not have the same conformal bootstrap method. Let us show this first by
recalling

∂iT
ij = 0 =⇒ ∂̄Tzz = ∂Tzz̄, ∂̄Tzz̄ = ∂Tz̄z̄ (4.2)

Let us next ask how the point-split operator det(T ), as above, changes as

6



we separate v and w. We have that

∂v̄〈Tzz(v)Tz̄z̄(w)− Tzz̄(v)Tzz̄(w)〉
= 〈∂vTz̄z(v)Tz̄z̄(w)− ∂v̄Tz̄z(v)Tz̄z(w)〉
= 〈∂vTz̄z(v)Tz̄z̄(w) + Tz̄z(v)∂w̄Tz̄z(w)〉
= 〈−Tz̄z(v)∂wTz̄z̄(w) + Tz̄z(v)∂w̄Tz̄z(w)〉
= 0

In the first line we have asked our question. In the second and fifth, we have
used the conservation of the stress energy tensor. In the third and fourth
lines, we have integrated by parts using vacuum Ward identities (i.e. by
noting that the momentum operator annihilates the vacuum).

Our incredible result is that we may separate v and w as much as we like
without changing the vacuum expectation value of this composite operator.
Let us then make the natural assumption, a la cluster decomposition, that
taking them infinitely far apart allows us to entirely factorize the expecta-
tion value. While we may have qualms that non-local dynamics put this
assumption on shaky footing, in the limit of infinite distance in seems at
least reasonable that we may factorize the correlation function in this way.
Then

〈Tzz(v)Tz̄z̄(w)− Tzz̄(v)Tzz̄(w)〉 = 〈Tzz〉〈Tz̄z̄〉 − 〈Tzz̄〉〈Tzz̄〉 (4.3)

Through a similar, but slightly more complicated procedure, we may also
show that the factorization holds in an arbitrary energy eigenstate:

〈n|TzzTz̄z̄ − Tzz̄Tzz̄|n〉 = 〈n|Tzz|n〉〈n|Tz̄z̄|n〉 − 〈n|Tzz̄|n〉2 (4.4)

Now, the statement of factorization is already a non-perturbative result,
but we may turn it into something more useful. We first recast our deforma-
tion of the Lagrangian as a deformation of the Hamiltonian, and therefore
the spectrum of the theory. In particular, we have

δL = δtdetT =⇒ δE = δtdetT

δEn = δtV
(
〈n|Txx|n〉〈n|Tyy|n〉 − 〈n|Txy|n〉2

)
If our theory lives on a cylinder of radius R, V = 2πR, simple configurations
lead us to

En = V 〈n|Ttt|n〉 → −V 〈n|Tyy|n〉, (4.5)

∂REn = −〈n|Txx|n〉 (4.6)

Pn = −iV 〈n|Txy|n〉 (4.7)

The first and third lines are simply Wick rotated versions of our usual story
relating the zeroth components of the stress-energy tensor to the momentum
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operators of our theory T0i ∼ Pi. The second line simply states that the
purely spatial component of the stress-energy tensor gives us the “pressure”
of the theory, i.e. it’s resistance or preference to expansion or contraction
of the space in which it lives. It is simple to combine these results with the
factorization theorem of 4.4 to obtain an elegant equation for the flow of the
eigenvalues through the TT deformation:

∂tEn = En∂REn +
1

V
P 2
n (4.8)

For CFTs, we have remarkably simple initial conditions which emerge
from the Virsasoro algebra and the rich constraints on 2D CFTS:

E

and solving our flow equation becomes simple. We retrieve the answer

En(V, t) =
V

2t

(√
1 +

4tEn
V

+
4t2P 2

n

V 2
− 1

)
(4.9)

which yields a simple, exact, non-perturbative statement about the spectrum
of our deformed theories. Great!

While the TT deformation may yield interesting physics, as shown in our
above example, this means nothing unless we can make precise statements
about this physics. Despite our initial worries that this physics might be-
come arbitrarily complicated relatively quickly, he TT deformed QFT steals
some of the features of the CFT to make our calculations easier – we are
deforming the theory using the sress-energy tensor, which after all encodes
symmetries of the CFT and deformed theories. As an easy example, we have
shown that we have an exact solution for the spectrum of consistent QFTs
which are generically very complicated! The wide potential applications
of TT deformation that we motivated in the first section suddenly become
much more tractable.

5 Random Geometry

Let us briefly discuss the connection between the TT deformation and ran-
dom geometry, initially elucidated by Cardy (see, for example, the discussion
of [1] and citations therein). To do so, we will notice that we can construct
the infinitesimal TT deformation through coupling to a non-dynamical ‘met-
ric’, which encodes the random geometry. This metric will have no derivative
terms in its action, and so will not necessarily be related to gravity. However,
it will couple to the stress-energy tensor, utilizing the wonderful properties
of Gaussian integration to yield an infinitesimal TT deformation.
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To begin, let us consider the following path integral for infinitesimal δt∫
Dh exp[

∫
d2x

(
− 1

2δt
εikεjlhijhkl + hijT

ij

)
] (5.1)

Since this path integral is Gaussian, we may perform it simply by inserting
the equation of motion for the ‘metric’ h:

hij = δtεikεjlT
kl (5.2)

This yields precisely the exponent of the infinitesimal deformation which we
used to define TT . Then we see that

Z(t+δt) =

∫
Dh exp

[∫
d2x

(
− 1

2δt
εikεjlhijhkl + hijT

ij

)]
Z(t) (5.3)

The construction of Cardy goes on to use these and similar arguments to
construct equations of flow for the deformed partition functions, and makes
even more interesting and exact statements about deformed theories. We
emphasize again that this is not yet a coupling to a gravitational theory,
but recent work has extended the ideas put forward by Cardy to connect
the results of TT deformation of a CFT and coupling the same CFT to a
modified version of gravity in 2D. Our construction above, which reproduces
an infinitesimal deformation by coupling to random geometry, is the gateway
to some of this very interesting work.

6 Lessons

There is not much left to say, other than that I hope you’ve enjoyed this brief
discussion on the beauty and applications of TT deformation. We discussed
how the TT procedure allows us to construct QFTs which flow between
CFTs in the UV and IR, and through simple examples noted that TT de-
formed theories exhibit interesting behaviors reminiscent of gravity theories.
We also made vague connections between TT and gravity from the path in-
tegral picture, coupling our deformed theory to a random geometry. The
enormous power of TT emerges when we note that, in addition to all of these
intriguing phenomena, TT deformation produces simple, non-perturbative,
and exact statements about interesting, relevant, and complicated physics
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