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1 Introduction
One of our biggest goals as physicists is to understand the fundamental structure of our universe.

The most fruitful pursuits to this end have been the cosmology and particle physics of the past
century. Cosmologists are interested in painting a consistent picture of the history of our universe,
and deducing the laws which govern nature through observations of large scale structure. Particle
physicists are interested in a seemingly orthogonal approach, understanding the extremely small
scale structures which we can probe by scattering atomic and subatomic particles.

At low enough energies, we have only a couple of puzzles left. Our main low energy efforts
in both particle physics and cosmology are devoted to understanding the physics and low energy
behavior of dark matter. We are also interested in the smallness of the cosmological constant, the
smallness of the Higgs mass, and other features which emerge at low energy scales, but these are
really questions about the high energy structure of our universe. Indeed, at higher energy scales,
there are too many puzzles to count! What particles have we missed at our colliders, or through
cosmological observations, simply because they are too massive or weakly coupled to excite in
terrestrial experiments, or to see with our current resolution for early universe observations such
as big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB)? What high
energy physics, or ultraviolet completions (UV completions) of our current understanding of the
low energy universe could possibly give rise to the rich structures that we see in the 100 billion
light year diameter of the universe to the 10−20 meter length scales probed at our colliders?

To answer these rich and deep questions, particle physicists and cosmologists have had to work
together. The theoretical efforts which I will briefly review and do little justice to in these notes,
is one manifestation of our cross-cultural collaboration. It relies on one key feature. Though the
large and small scales that we study in physics seem hopelessly disparate, they really are unified.
We think that the structures that emerge in our large scale universe actually emerge because of the
interactions and scattering of perturbations in the early universe. Cosmological observations have
given more and more support to the idea that there was a particle (or particles) that existed in the
early universe, the inflaton, which drove a period of incredibly fast expansion of the universe. With
this hypothesis, the quantum mechanical fluctuations of the inflaton in the early universe formed
the seed for the large scale structure we see in the sky. The way we can predict the correlations
of the large scale structure we observe given our hypothesis of inflation is actually through the
same scattering calculations performed by particle physicists in our tiny terrestrial colliders. In
these notes, we hope to excite your interest in Cosmological Collider Physics, which unifies the
perspectives of particle physics and comsology, and uses the large scale structures of our universe to
understand the properties of nature at extraordinarily high energy scales and tiny length scales, in
some cases approaching the Planck scale to within 5 orders of magnitude!

With this in mind, though we are cosmologists in this course, let us briefly become particle
physicists. We want to understand the large scale structures of our universe, but we will do so with
the techniques we use to understand the small scales. After a brief review of inflation, we will
explore some complicated, model dependent methods to use quantum mechanics and scattering to
understand the correlation functions of inflatons, and thus the large scale structure of the universe. In
the search for simpler, more precise methods, we will see that an exotic symmetry called conformal
symmetry governs the patterns we expect to see in the early universe. We will develop intuition
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for conformal symmetry and use it to explore the mathematical structure of the correlations of
inflatons in the early universe. We will see how these correlation functions change when we add new
particles against which the inflaton may scatter, discuss how their properties emerge in the large scale
structure of the universe today, and discuss briefly some ongoing and exciting experimental efforts
which may be able to use the techniques we have developed to probe the fundamental structure of
our universe at unprecedented energy scales.

2 Inflation, Perturbations, and Large Scale Structure

Films live or die on their casting.

Peter Jackson

There are several features of the universe which are befuddling without inflation. The flatness
of the universe seems like an unparalleled cosmic coincidence. The isotropy of the CMB over
enormous, causally disconnected scales is uncomfortable and impossible to avoid. The lack of
any observational evidence for the magnetic monopoles predicted by theories which unify the
electromagnetic, strong, and weak nuclear forces left many of our cosmologist foremothers and
forefathers scratching their heads. Inflation provides solutions to these problems which emerged
during the cosmology of the 20th century by describing a universe which expanded very rapidly in
its earliest stages, diluting monopoles, spreading out causally connected regions and signatures that
became the CMB today, and thinning out the curvature of the universe so that the flatness we see
today is a prediction, rather than a headscratcher. The theory of inflation is also supported by the
flatness of the CMB power spectrum at large angular scales, which is proposed to be a manifestation
of the scale-free power spectrum predicted by inflation.

Inflation is a successful model of our early universe because it provides solutions to many
comsological puzzles and agrees well with cosmological data. With this in mind, let us continue
with our report assuming that inflation is true, and that we have an inflaton field which contributed
dominantly to the energy of the early universe. We will use language that reflects this assumption.

While there are many models of inflation, here we will explore the physics of a universe with
a single inflaton, which produces inflation by slowly rolling through its potential. If any of the
discussion covered here is unfamiliar, we highly recommend Daniel Baumann’s TASI Lectures on
inflation [1], from which we draw liberally!

2.1 Lightning Review of Inflation
For a single scalar inflaton φ with a free kinetic term and potential V (φ), we may write the

action

S =

∫
d4x
√
−g

(
−1

2
gµν∇µφ∇νφ− V (φ)

)
. (2.1.1)

When the universe is approximately spatially flat, with an Friedmann-Robertson-Walker (FRW)
metric of the form

ds2 = −dt2 + a2(t)dx2, (2.1.2)
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it is simple to derive the stress-energy tensor of the inflaton. It takes the form

T µν = ∂µφ∂νφ− gµνgρσ∂ρφ∂σφ− gµνV (φ) = diag(ρ, p, p, p). (2.1.3)

Let us assume that the inflaton takes on a constant value in space, up to small perturbations. The
energy density ρ and pressure p due to the inflaton are then given by

ρ =
1

2
φ̇2 + V (φ) (2.1.4)

p =
1

2
φ̇2 − V (φ). (2.1.5)

We would like to use inflation to describe a period of the universe in which there is a period of
exponential inflation, and we recall the thermodynamic relation

d(ρV )

dt
= −pdV

dt
. (2.1.6)

Since V ∼ a3(t), we have

ȧ

a
= H =

1

3

ρ̇

ρ+ p
, (2.1.7)

which gives us in turn

φ̈φ̇+ V ′(φ)φ̇

φ̇2
= 3H (2.1.8)

φ̈− 3Hφ̇+ V ′(φ) = 0. (2.1.9)

In order for the scale of the universe to grow exponentially, the Hubble parameter H must be
constant. The second Friedmann equation tells us that

Ḣ = 0 = − 1

2M2
Pl

(ρ+ p), (2.1.10)

where M2
pl = (8πG)−1 For constant H , we want ρ = −p to a good approximation; in this case, the

scale factor grows as

a(t) = a(0)eHt, (2.1.11)

exactly as we wanted. Great!

There are two assumptions which appeared as key points in our argument above. One thing we
assumed was that

φ̇2 � 2V (φ), (2.1.12)

so that ρ ≈ −p. Furthermore, in order for this condition to remain unchanged over cosmological
timescales, we want φ̇ to remain small. Then we should take ∆tcosmologicalφ̈ to be much smaller than
φ̇. Using ∆tcosmological ∼ H−1, we have

φ̈� Hφ̇. (2.1.13)
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These assumptions are called the slow-roll assumptions, because they indicate that the value of φ
is changing very slowly, and therefore rolling only very slowly toward its lowest energy state at the
minimum of the potential V (φ).

The slow-roll assumptions in the literature may take various forms. However, they always take
some “slow-roll parameters” to be very small. It is common to write the slow roll parameters as

ε =
d

dt

1

H
= − Ḣ

H2
, η = − φ̈

Hφ̇
(2.1.14)

or alternatively as

εV =
M2

Pl

2

(
V ′(φ)

V (φ)

)2

, ηV =M2
Pl

V ′′(φ)

V (φ)
. (2.1.15)

These parameters must all be very small in the limit of slow-roll inflation, and the ε and η can be
related directly to the εV and ηV under these assumptions.

We will finally notice that our final metric, without considering perturbations around the spatial
average value of the inflaton field, takes the form

ds2 = −dt2 + e2Htdx2. (2.1.16)

This expression is very special. It is so special that it has its own name: this is the metric of
de Sitter space (dS). It turns out that this space is “maximally symmetric”, a statement that can
be made rigorous with a bit more knowledge from general relativity. Conformal symmetry, the
symmetry of dS, will be the main star of these notes. Thinking like particle physicists, we will be
thinking about the scattering that led to the correlation functions in the universe that we see today,
see how symmetries can constrain this scattering, and characterize the strength of the deviations of
our predictions due to symmetry.

To make the symmetry more manifest, it will be helpful to make the coordinate change

t→ η = −H−1e−Ht = − 1

Ha(t)
. (2.1.17)

In these coordinates, we have

ds2 =
−dη2 + dx2

η2
. (2.1.18)

It is clear that we may rescale all of our new coordinates and not change the metric, and it turns out
that we have some much more interesting transformations, called special conformal transformations,
which are similarly isometric. We will explore this soon, after touching upon some of the quantum
mechanics with which we may think about inflationary correlators.

We will conclude our lightning fast review here, noting that we have barely touched some of the
beautiful results predicted by inflation, and its relationship to the our current observations.
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2.2 Perturbations
Our discussion of inflation so far has had an inflaton field which is uniform in space, and changes

slowly in time. However, in general there will be both thermal and quantum mechanical fluctuations
of the inflaton field. These fluctuations contribute also to the geometry of spacetime. The increased
or decreased energy densities due to inflaton fluctuations produce curvature perturbations, and it is
the combination of these inflationary and gravitational perturbations that gives rise to the large scale
structure of our universe in models of inflation.

To be precise, let us write the spatial metric in the form

gij = a2(t) ((1− 2Ψ)δij + Eij) , (2.2.1)

where there is important information contained in Eij which we will not explore here. There are
several ways to describe curvature fluctuations due to the dynamics and interactions of gravity and
the inflaton field, such as the comoving curvature perturbation:

R = Ψ−H δq

ρ+ p

inflation−−−−→ Ψ+H
δφ

φ̇
. (2.2.2)

Ψ can be thought of as a local deviation to the scale factor, δq generates perturbations to the local
momentum density,

Ti0 = ∂iδq
inflation−−−−→= −φ̇∂iδφ (2.2.3)

and p+ ρ sets a characteristic scale for the momentum density using non-perturbed quantities of the
system. For example, in spatially flat gauge, we set

Ψ = E = 0, (2.2.4)

and the curvature perturbations are linearly related only to the inflaton perturbations:

R = H
δφ

φ̇
. (2.2.5)

In our choice of gauge, it is clear that the correlation functions of the curvature fluctuations
are therefore simply related to the correlation functions of the inflaton fluctuations, and we can
understand the correlations of inflationary perturbations by studying the correlations of the scalar
curvature:

〈Rk1Rk2〉 =
2π2

k31
P (k1)δ(k1 + k2) (2.2.6)

where P (k1) is the power spectrum of the scalar curvature fluctuations. We observe that at large
scales, the scalar power spectrum in nature is roughly scale invariant. This is precisely what is
predicted by inflation! This provides us with good evidence that inflation provides a framework
which could produce the large scale structure of the universe we observe today, as well as a way for
us to use large scale structure to probe the physics of inflation. The goal of cosmological collider
physics is to approach this question from a new way. Before we explore the cosmological collider,
however, let us explore more traditional approaches involving the quantum mechanical dynamics of
the inflaton.
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3 Quantum Mechanics

Orcs! And so far from Orcland!

Gandalf the Grey

Though the signatures we observe in the large scale universe are dominated by classical physics,
it seems likely that their source was the quantum mechanical fluctuations of the inflaton! In this
section, we explore the origins of these quantum mechanical fluctuations to understand what we can
say about the power spectrum of the scalar fluctuations which seeded the CMB today, and why we
will need to find more elegant strategies to expose the fundamental physics which governs these
fluctuations.

3.1 Bunch-Davies Modes
To get some quantum mechanical traction on the fluctuations of the inflaton, let us write its

action, Equation 2.1.1, in conformal time during slow-roll:

S =

∫
dηd3xa2(η)

(
1

2

(
φ̇2 − (∂iφ)

2
)
− V (φ)

)
(3.1.1)

where dots indicate derivatives with respect to time. We showed together that this is equivalent to

S =
1

2

∫
dηd3x

[
(v′)2 +

z′′

z
v2 − (∂iv)

2 − 2V
(v
a

)]
, (3.1.2)

where v = aδφ, z = aφ̇/H , and primes indicate derivatives with respect to conformal time.

We also showed that

z′′

z
=

2

η2
, (3.1.3)

so that the equations of motion in momentum space read

v′′k + (k2 − 2

η2
)vk =

2

a
V ′

k

(v
a

)
(3.1.4)

In order to quantize this action, let us ignore the potential; the corresponding equation of motion
becomes

v′′k + (k2 − 2

η2
)vk = 0 (3.1.5)

with the corresponding, normalized positive frequency modes

v+k = a(η)φ+
k =

e−ikη

√
2k

(
1− i

kη

)
(3.1.6)
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The full field is then a real linear combination of positive and negative frequency modes. In
particular, following the usual path of quantization, we make the coefficients of the positive and
negative frequency modes the annihilation and creation operators, respectively. As in usual quantum
mechanics, these operators act on the vacuum to annihilate and create states of particular momenta.

v̂(x, η) = a(η)δ̂φ(x, η) =

∫
d3k

(2π)3

[
v+k âk + v−k â

†
k

]
, (3.1.7)

where hats are included here to indicate the promotion of functions to quantum mechanical operators,
and will henceforth be suppressed.

3.2 Correlations and Complications
Using the canonical commutation relations[

ak, a
†
k′

]
= (2π)3δ(k + k′), (3.2.1)

and the usual definition of the vacuum, known in the inflaton case as the Bunch-Davies vacuum,

ak |0〉 = 0 ∀k, (3.2.2)

we may very quickly derive the inflaton power spectrum in the absence of interactions:

〈0| δφk(η)δφk′(η) |0〉 = (2π)3δ(k + k′)
|v+k |2

a2(η)
= (2π)3δ(k + k′)

H2

2k3
(
1 + k2η2

)
(3.2.3)

Since the curvature perturbations during slow roll are related to the inflaton by choice of gauge
asR = H

φ̇
δφ, we can use this to compute the correlations of spatial curvature at horizon crossing:

〈0|Rk(η)Rk′(η) |0〉 = 2π2

k3
P (k)δ(k + k′) (3.2.4)

P (k) =
H4

horizon crossing

(2π)2φ̇
2

horizon crossing

(3.2.5)

This tells us about the power spectrum of scalar curvature fluctuations in our universe at lowest
order.

There are also model independent ways of thinking about the non-gaussianities which we expect
to see in the bispectrum B(k1, k2, k3) and bispectrum amplitude, defined by [2]

〈Universe|Rk1(η)Rk2(η)Rk3 |Universe〉 =
(2π2)2

(3.2.6)

fNL =
5

18

B(k, k, k)

P 2(k)
. (3.2.7)

To get the most precise results possible to compare against upcoming experiments, we expect that
we will have to put in some model-dependent work.
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In particular, we will have to see how the vacuum evolves as the universe expands, as dictated by
quantum mechanics. This is usually achieved with the in-in formalism, in which we recall that the
time evolution of a quantum state such as our vacuum is governed by the Hamiltonian, as in

|0〉 time evolution−−−−−−−−→
from t0 to t

T

{
exp

[
−i
∫ t

Hinteraction(t
′)dt′

]}
|0〉 . (3.2.8)

The interaction Hamiltonian, which governs non-trivial scattering and can have extremely complicated
forms, needs to be taken into account when we compute the bispectrum we want to compare to
observations! This is a scary idea: there is so much parameter space to explore, and if only we
had a simpler method, we might hope to forego these extremely model independent methods for a
simpler unified picture. This is precisely what symmetry is good for! Then let us begin to explore
the symmetries of the correlation functions that we want to compare to experiment, such as the
bispectrum, in hopes that they will give us a deeper intuition for the physics governing the universe
at the high energy scales set by inflation.

4 Conformal Symmetry

Conformal field theories are very deep and very narrow, like a grave.

Massimo Poratti

As physicists, symmetry makes our job much easier. When we can change the way we look at
a system and get the same answer, we get very strong constraints on the physical behavior of the
system. Inflationary physics is no different.

In this section, we will explore the foundations of the approximate conformal symmetry which
emerges during inflation, and discuss the strategy of Ward identities which will guide us in our
search for consistent histories of our universe. Though conformal symmetry emerges in systems of
various dimensions, we will work in our four-dimensional universe in the following discussion.

4.1 Foundations
Let’s remember that the metric of our spacetime during inflation can be written as, up to

corrections controlled by perturbations and the slow-roll parameters,

ds2 =
−dη2 + dx2

η2
(4.1.1)

Of course we have the usual translation and rotation symmetries acting on just our spatial
dimensions:

x→ x + a, x→ Rx (4.1.2)

However, we also have a symmetry corresponding to dilation, or “stretching”, of the space:

D: η → η′ = λ−1η, x→ x′ = λ−1x, (4.1.3)

9
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with the corresponding differential generator

D = −η∂η − xi∂i. (4.1.4)

We also have a less obvious symmetry in which we invert all of our coordinates, perform a
translation, and invert back. The result is a special conformal transformation

SCT: x Inversion−−−−−→ x′ = x/x2 Translation−−−−−−→ x′′ = x′ − b Inversion−−−−−→ x′′′ = x′′/(x′′)2 =
x− x2b

1− 2b · x + x2b2 ,

(4.1.5)

with the corresponding differential generator

2xiη∂η + (2xjxi + (η2 − x2)δij)∂j. (4.1.6)

We see that conformal symmetry is a symmetry of the classical spacetime. This will lead us to
two natural and important axioms for the quantum mechanical theory:

• The vacuum is invariant under conformal symmetry transformations:

D̂ |0〉 = K̂i |0〉 = 0 (4.1.7)

• The correlation functions of the quantum mechanical theory obey conformal symmetry.

There is one final assumption we will use which feels less natural. We will assume in the
following that the inflaton is an operator with very special properties. In particular, we will assume
that the inflaton is a scalar conformal primary operator, which is defined to transform under conformal
coordinate transformations as

φ′(x′, η′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/4

φ(x, η). (4.1.8)

This means that the field transforms exactly as we would expect a scalar to transform under
translations, rotations, and special conformal transformations, but that it actual picks up an extra
piece under dilatations. In other words, when we take xµ → λxµ, the inflaton changes with some
corresponding scaling dimension:

φ(λx) = λ∆φ(x). (4.1.9)

There are many ways to express the scaling dimension. For example, we see that

(1 + εη∂η)φ(0, η) ≈ φ(0, (1 + ε)η) ≈ (1 + ε∆)φ(0, η) (4.1.10)
η∂ηφ(0, η) = ∆φ(0, η), (4.1.11)

where in the first line, we have produced an infinitesimal dilatation at our spatial origin, and in the
second we have notices that this implies that the inflaton φ has nice properties under conformal time
translation.
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Great. Then, as is common, we take the inflaton to be primary operator; this is the final
assumption we will be using. In fact, in conformal field theories, we can construct any operator we
want out of primary operators. Therefore, even if the inflaton were not a primary operator, we would
still be able to deduce the properties of its correlations through the properties of the correlations of
the primary operators out of which the inflaton is constructed.

To make this more precise, and to aid in the discussion of the following section, we will notice
that there are quantum mechanical operators which implement these symmetry transformations:

eiλD̂φ(x)e−iλD̂ = φ′(x′) ≈ φ(x) + λδDφ(x), (4.1.12)

eibiK̂iφ(x)e−ibiK̂iφ′(x) = φ′(x′) ≈ φ(x) + biδKi
φ(x). (4.1.13)

In the infinitesimal case, we can write the equivalent conditions

i
[
D̂, φ(x)

]
= δDφ(x) = −

(
η∂η + xi∂i

)
φ(x) = −

(
∆+ xi∂i

)
φ(x) (4.1.14)

i
[
K̂i, φ(x)

]
= δKi

φ(x) =
(
2xi∆+ xixj∂j − xµxµ∂i

)
φ(x) (4.1.15)

In cosmology, we care about the correlations of fields in momentum space, so it will be useful
to write

δDφk = −
(
∆− 3− ki

∂

∂ki

)
φk (4.1.16)

δKi
φk =

(
(∆− 3)

∂

∂ki
− kj

∂2

∂kj∂ki
+
ki
2

∂2

∂kj∂kj

)
φk. (4.1.17)

Similarly, the transformations of the inflaton under translations along the i direction or rotations
about the i axis are given by

δPi
φk = kiφk (4.1.18)

δRi
φk = εijl

(
kj

∂

∂kl
− kl

∂

∂kj

)
φk. (4.1.19)

4.2 Ward Identities
Now symmetry can begin doing some work for us. The techniques we are about to present for

the symmetries in de Sitter are actually much more general. I know of at least one example where a
hundred-page paper can be converted into a single line with a simple extension of the arguments
we give below. In particular, we will show that symmetries give us so-called Ward identities of
correlation functions, as follows

δ〈φ1φ2...〉 = 0 =
N∑
i=1

〈O1...δOi...ON〉. (4.2.1)

This seems innocuous enough, but we will see its enormous strength soon. Before that, let’s do
a simple example. Consider a correlation function of a set of inflatons in momentum space:

〈φk1 ...φkN
〉. (4.2.2)

11
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Equation 4.1.18 tells us the form of δφk under translations, which tells us that

N∑
a=1

〈φk1 ...δφka ...φkN
〉 = 0 =

N∑
a=1

ka〈φk1 ...φkN
〉. (4.2.3)

Then the correlation function can only be nonzero when all of the momenta add to zero, and we
have recovered momentum conservation

〈φk1 ...φkN
〉 ∼ δ(3)

(
N∑
a=1

ka

)
(4.2.4)

in a simple and elegant way! Similarly, the rotational symmetry of our space tells us that correlation
functions must depend only on the dot products of spatial momenta or on the square of spatial
momenta, which we will leave as a fun exercise. Another fun exercise we will leave behind is to find
exactly where our assumption that the vacuum is invariant under the symmetry transformations in
question.

Now let’s use this intuition to discover how conformal symmetry can more deeply constrain
cosmology. From the dilatation symmetry of Equation 4.1.16, we get the corresponding Ward
identity

N∑
a=1

(
∆− 3− kaj

∂

∂kaj

)
〈φk1 ...φkN

〉 = 0. (4.2.5)

From the special conformal symmetry of Equation 4.1.17, we have the more complicated relation

N∑
i=1

(
(∆− 3)

∂

∂kai
− kaj

∂2

∂kai ∂k
a
j

+
kai
2

∂2

∂kaj ∂k
a
j

)
〈φk1 ...φkN

〉 = 0. (4.2.6)

So we have some differential equations which we can use to constrain the properties of the inflaton
correlations! Great! In the next section, we will explore exactly what these differential equations are
telling us about the nature of our early universe.

4.3 Why can we use Conformal Symmetry?
In the above, we mentioned that we wanted the inflaton to behave like a conformal primary,

which would allow us to access the power of conformal symmetry to constrain correlation functions,
and thus gain predictive power over the large scale structure of the universe. But a question remains.
Why the heck is this reasonable?

Indeed, it is not necessarily reasonable at early times. The key, and the gateway to conformal
symmetry, is the innocent looking Equation 4.1.11; it is necessary and sufficient for the inflaton to
obey this rule, if we want to use conformal symmetry to describe its correlations.

To see the regimes in which Equation 4.1.11 holds, and thus the regimes in which we have
access to conformal symmetry, we need to return to our earlier quantum mechanical description of

12
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the inflaton. In particular, we need to remember the expansion of the inflaton in the form of Bunch-
Davies modes. If the Bunch-Davies modes of Equation 3.1.6 and their massive generalizations
obey Equation 4.1.11, then we have a gateway to conformality. We prove in Appendix A.1 that
this happens at late times as η approaches 0. In particular, we show that the dominant piece of the
inflaton at late times has a scaling dimension

∆ =
3

2
−
√

9

4
− m2

H2
, (4.3.1)

so that we indeed have an operator which behaves like a conformal primary at late times, allowing
us to access the technology of conformal symmetry and Ward identities which we presented above.
Our toolkit now includes conformal symmetry and the scaling dimension of the inflaton, and we are
ready to quantitatively attack inflationary correlations at the end of time.

5 The Math of Conformal Inflationary Correlators

The thing about conformal field theory is that you just get used to it.

Atakan Hilmi Firat

Now that we have some precise ideas of the effects of conformal symmetry on inflationary
correlators, let us calculate a few! Actually, in this section, we will mostly be citing results. The
actual solution of the differential equations above will be relatively simple, if tedious, with symbolic
software and the correct boundary conditions. In this section we will be briefly exploring the correct
boundary conditions and the space of solutions to the differential equations we derived through
symmetry in the previous section.

5.1 Approximately Conformal Inflation
Though we will be concerned mainly with the inflaton before we begin considering the possible

manifestations of new physics, it will be helpful to explore the correlation functions of different
scalar operators in the presence of conformal symmetry. Up to normalization, the only two point
function of two operators O1 and O2, with scaling dimensions ∆1 and ∆2 respectively, is fixed
entirely by conformal symmetry. In particular, the correlation function in real space must be a
fucntion of |x1− x2| by rotational and translational invariance, and the only such function consistent
with dilatation symmetry is

〈O1(x1)O2(x2)〉 =
c

|x1 − x2|∆1+∆2
, (5.1.1)

with c an undetermined constant. It is standard to fix the normalization, so that c = 1. Defining

x12 = |x1 − x2|, (5.1.2)

special conformal invariance can then be used to fix

〈O1(x1)O2(x2)〉 =
1

x2∆1
12

δ∆1∆2 . (5.1.3)

13
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We derive this in two different ways in Appendix A.3. Going into momentum space, the corresponding
correlator becomes

〈O1(k1)O2(k2)〉 = cO1δ∆1∆2k
2∆1−3
1 × (2π)3δ(k1 + k2) (5.1.4)

Similarly, we can use conformal symmetry to see that

〈O1(x1)O2(x2)O3(x3)〉 =
c123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (5.1.5)

where c123 a constant which depends on the three operators in question. We also derive this in
Appendix A.3.

Since the inflaton is a single field with fixed scaling dimensions, these equations tell us a great
deal about how conformal symmetry constrains the correlation functions of two and three inflaton
fields. The four point function, however, will be what interests us most. We will see that deriving the
inflationary four point function requires some work, but it will be worth it. The four point function
of the inflaton will be our main ingredient moving forward, and will tell us about the inflaton three
point function, the behavior of the inflaton in various limits, and how to use the CMB spectrum to
search for new physics.

We will begin with conformally coupled scalars, which we will denote by ϕ, discussed more in
Appendix A.2. The mass of a conformally coupled scalar is

m2
ϕ = 2H2, (5.1.6)

which gives us the scaling dimension

∆ϕ = 2 (5.1.7)

at late times.

The four point correlation function of four conformally coupled scalars, say in momentum
space, should naively depend on the four momenta k1, ..., k4. This means we naively expect the
correlation function to depend on twelve degrees of freedom. However, we can use symmetry to
reduce the number of degrees of freedom we need. In particular, we have three special conformal
transformations, three translations, one dilatation, and three rotations available to us to move around
our momenta, for a total of ten independent symmetry transformations. We may then use symmetry
to eliminate ten of our naive degrees of freedom, leaving only two degrees of freedom on which
our four point function will depend; we will follow convention and define two quantities which are
invariant under all the symmetries of the system:

u =
kI

k1 + k2
(5.1.8)

v =
kI

k3 + k4
(5.1.9)

kI = |k1 + k2|, (5.1.10)

where we use ki to indicate the ith energy, and ki to indicate the ith three-momentum.

14



Notes on the Cosmological Collider Sam A.

With these in hand, we will find it useful to write the four point function as

〈ϕk1ϕk2ϕk3ϕk4〉 =
1

kI
F̂ (u, v). (5.1.11)

This satisfies the dilatation Ward identity of Equation 4.2.5, and with some algebraic manipulations
we will omit, the special conformal Ward identity can be transformed into

(∆u −∆v) F̂ (u, v) = 0, (5.1.12)

where we have defined the differential operators

∆u ≡ u2(1− u2)∂2u − 2u3∂u, ∆v ≡ v2(1− v2)∂2v − 2v3∂v (5.1.13)

The simplest solutions we can imagine writing have poles in the total energy

E =
∑
n

kn =
u+ v

uv
kI . (5.1.14)

These solutions, with the simplest possible singularity structure, are called contact interactions. The
simplest one takes the form

F̂ (0)
c = c0Ĉ0 ≡ c0

uv

u+ v
=
c0
E
kI . (5.1.15)

Furthermore, we can generate more solutions by noting that

[∆u,∆u −∆v] = 0. (5.1.16)

Then any power of ∆u acting on Ĉ0 also produces a four point correlation consistent with conformal
symmetry at late times, and we write

F̂ (n)
c = cnĈn ≡ cn∆

n
uĈ0 =

cnf̂n(u, v)

E2n+1
, (5.1.17)

where f̂(u, v) is a function whose form is fixed by conformal invariance.

While we will not prove it, we can in general write the full set of possible contact interactions
that we are interested in as a sum of the terms we found above. The first couple of terms take the
form

F̂c(u, v) =
∞∑
n

cn∆
n
uĈ0(u, v)

= c0
uv

u+ v
− 2c1

(
uv

u+ v

)3
1 + uv

uv
− 4c2

(
uv

u+ v

)5
u2 + v2 + uv(3u2 + 3v2 − 4)− 6(uv)2 − 6(uv)3

(uv)3
+ ....

(5.1.18)
Notice that the solutions are symmetric under the exchange u←→ v, and in fact it does not matter
if we used Ĉ1 = ∆uĈ0 or Ĉ1 = ∆vĈ0. This is another beautiful feature of conformal symmetry
which we will not explore further.
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If we were to use intuition from, for example, quantum field theory, we would expect that these
interactions could also arise from “integrating out” massive particles, or reproducing the effects and
interactions of massive particles in our full theory using only interactions of the inflaton. Indeed,
this is true, and we can produce effective theories which include only the inflaton, but reproduce
deeper physics at higher energies, using these contact terms. However, it will also be useful to try to
attack this higher energy physics directly! Let us ask what happens to the four point correlations of
the inflaton when we add new particles to our theory off of which the inflaton can now scatter.

In particular, we will use the contact terms, which we argued will appear in an effective theory
where we have integrated out additional particles, to understand the four point correlations in the
presence of these new heavy scalar particles with massM . To do this, we will look for an expression
for the four point correlation F̂e(u, v) which expresses the four point correlation due to the exchange
of a massive scalar and satisfies(

∆u +M2
)
F̂e(u, v) =

(
∆v +M2

)
F̂e(u, v) = Ĉ(u, v), (5.1.19)

where Ĉ(u, v) corresponds to a contact solution. This automatically satisfies

(∆u −∆v)F̂e(u, v) = 0, (5.1.20)

and iut is consistent with our picture that integrating out heavy fields should produce contact
interactions. In the limit M2 →∞, we have

F̂e(u, v) =
Ĉ(u, v)

M2
, (5.1.21)

so that indeed the decoupling of new heavy particles leads to suppressed contact interactions. More
formally, we can write

F̂e(u, v) =
Ĉ(u, v)

∆u +M2
. (5.1.22)

If we take Ĉ(u, v) = Ĉ0(u, v), and let(
∆u +M2

)
F̂ (n)
e (u, v) =

(
∆v +M2

)
F̂ (n)
e (u, v) = Ĉn(u, v) (5.1.23)

then we produce the geometric series

F̂ (0)
e (u, v) =

1

M2

∞∑
n=0

(
−∆u

M2

)n

Ĉ0 =
∞∑
n=0

M−2n−2Ĉn, (5.1.24)

so that the presence of heavy particles produces contact interactions exactly as we would expect!
The case of more general Ĉ(u, v) is a simple extension.

Let us not get too distracted, however. We are interested in full solutions for our theory with a
heavy scalar which interacts with the inflaton, rather than expansions, and we will have them! Let
us take again Ĉ(u, v) = g2Ĉ0(u, v). First, we will need the homogenous solutions to the differential
equation in 5.1.19. Defining

M2 = µ2
e +

1

4
, (5.1.25)

16



Notes on the Cosmological Collider Sam A.

these take the form

F±(u) =

(
iu

2µe

) 1
2
±iµe

2F1

[
1
4
± iµe

2
, 3
4
± iµe

2

1± iµe

;u2
]
. (5.1.26)

As we will see from the form of the final solution, the math required to solve this equation is already
beyond the scope of these notes. We will relegate the math to [3] and instead simply state the
solution. We will note that the boundary conditions, and particularly regularity of the four point
function in the limit u→ 1 and the correct normalization in the limit u, v → −1, fix the solution to
take the unique form

F̂ (0)
e (u, v) =

{∑∞
m,n=0 cmnu

2m+1
(
u
v

)n
+ π

2 cosh(πµe)
ĝ(u, v), u ≤ v∑∞

m,n=0 cmnv
2m+1

(
v
u

)n
+ π

2 cosh(πµe)
ĝ(v, u), u ≥ v

(5.1.27)

cmn =
(−1)n(n+ 1)(n+ 2)...(n+ 2m)[

(n+ 1
2
)2 + µ2

] [
(n+ 5

2
)2 + µ2

]
...
[
(n+ 1

2
+ 2m)2 + µ2

] (5.1.28)

ĝ(u, v) = F̂+(u)F̂−(v)− F̂−(u)F̂+(v)−
α−

α+

(β0 + 1)F̂+(u)F̂+(v)−
α+

α−
(β0 − 1)F̂−(u)F̂−(v)

+ β0

[
F̂−(u)F̂+(v) + F̂−(v)F̂+(u)

]
(5.1.29)

α± = −
(

i

2µe

) 1
2
±iµe Γ(1± iµe)

Γ(1
4
± iµe

2
)Γ(3

4
± iµe

2
)

(5.1.30)

β0 =
1

i sinh(πµe)
. (5.1.31)

This is quite a mouthful, but it is also powerfully constrained, and its uniqueness is quite beautiful
and tantalizing.

We can now consider the generalized solution to(
∆u +M2

)
F̂ (n)
e = (−1)nĈn, (5.1.32)

which generates a recursion relation

F̂ (n)
e =M2F̂ (n−1)

e − Ĉn−1. (5.1.33)

The solution to the recursion can actually be expressed as the solution we have already expressed,
along with contact solutions:

F̂ (n)
e =M2nF̂ (0)

e −
n−1∑
m=0

M2(n−m−1)Ĉm. (5.1.34)

Amazing! We now have ways to look for new particles which interact with the inflaton, by examining
the structure of its four point correlations. The power of this expression will be made sharper as we
examine its behavior in several limiting cases.
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5.2 Extra Information from Limits
The limits of the above solution are important. Not only does the regularity of the correlation

in the limit u→ 1 uniquely fix the solution, but various other limits can also give other important
information.

In the limit u→ −v, the solution actually has a branch cut singularity which tells us a great deal
about the theory. In particular, in this limit, we can write F̂ using the schematic form

lim
u→−v

F̂ (u, v) ∼ Aflat(u+ v) log(u+ v). (5.2.1)

The discontinuity of F̂ at the branch cut can be related to the flat space scattering amplitude Aflat

[3] via

− 1

2πi

v2

k2I
Disc

[
dF̂ (v)

dv

]
=

1

(k1 + k2)2 − (k1 + k2)2
= Aflat, (5.2.2)

which includes a factor which, in quantum field theory, we associate with the propagator of a scalar
field. Using the flat space limit, we will be able to better understand the relationships between
the flat space interactions which are associated with inflaton correlations at late times in curved
spacetime.

There are various other interesting limits which reveal a great deal about inflationary physics.
For our purposes, the most important will the the collapsed limit or the soft limit, in which both u
and v approach 0. In this limit, we have

lim
u,v→0

F̂ (u, v) =
(uv
4

) 1
2
+iµ

(1 + i sinh(πµ))
Γ(1

2
+ iµ)2Γ(−iµ)2

2π
+ complex conjugate. (5.2.3)

Since the limit u, v → 0 is analogous to working in the center of momentum frame in which we
have two particle scattering through the production of an intermediate particle state, we call this the
“particle production” piece. The most important feature of this function is its oscillatory behavior in
uv, which can be observed by looking at the way that the correlations of large scale structure change
with u and v. We can therefore use the correlations of large scale structure in our universe to probe
the existence of UV physics, and particles with enormous masses. By using the collapsed limit,
we will be able to single out the effects of particle production and search for signatures of heavy
new scalars in the night sky. To search for particles with non-zero spin, or different masses, we can
develop slightly more technology.

6 Looking for Signatures of New Physics

Bigfoot populations require vast amounts of land to remain elusive in.

Futurama

In this section, our goal will be to gain a (very) heuristic picture of how we may probe the large
phase space of massive spinning new particles by looking to the sky. We will begin by giving a
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brief discussion of spin raising and weight raising operators, which allow us to use the technology
we developed above with more exotic new particles. We will go on to discuss EUCLID and DESI,
exciting new experiments which will be able to take advantage of this new mathematical technology
to probe fundamental physics at unprecedented scales. We feel that this is a fitting end for our
journey, leaving with some room for mathematical development as well as hope for the future of the
wonderful experiments which may shed light on the unsolved mysteries of our universe.

6.1 Spin Raising Operators
In this section, we will explore the signatures of massive spinning particles in inflationary

correlations. Our discussion will be purely heuristic. We will not do justice to this rich subject, and
highly recommend Section 4 of [4]. As we discovered above, the inherent interactions of the inflaton,
independent of any new physics or particles lead to certain irreducible signatures in four point
functions. However, in the case of inflaton scattering with heavy scalars or spinning particles, we
can use conformal symmetry to obtain the four point inflaton correlators by looking at the scattering
of inflatons off of heavier particles. This general technique, known as operator product expansion, is
too rich to explore in any detail here. Instead, we will present the key equation in a schematic form,

〈ϕk1ϕk2ϕk3ϕk4〉′disconnected = 〈ϕk1ϕk2O
a1...aN 〉Πa1...aN b1...bN

〈OO〉
〈Ob1...bNϕk1ϕk2〉+ (k2 ←→ k3) + (k2 ←→ k4) ,

(6.1.1)

drawing from [4] and Appendix A of article [3]. On the left hand side, we refer to the “disconnected”
piece of the inflaton four point correlation; this is the piece of the four point correlation which is not
Gaussian, and thus cannot be obtained solely from knowledge of the inflaton two point correlation,
and the prime indicates that we have stripped off a momentum conserving delta function. On the
right hand side, we have the three point correlation of the inflaton with a new field O, with indices
a, b, c... which control its polarization. The Πa1...a2... is related to the two point function of the O,
and heuristically controls the probability amplitude for an O with polarization a1...aN to convert
into a polarization b1...bN , and the 〈OO〉〉 simply contains the momentum dependence of the two
point function of the O, as in Equation 5.1.4.

This equation tells us that the disconnected piece of the four point function, which controls
four point non-Gaussianities, is determined by the the three point functions of the inflaton which
additional particles which produce the non-Gaussianities. The three point functions control the
scattering of the inflaton off of our new particles and are glued together by the polarization structure
of the O.

This is a beautiful picture, but we can extend it even further. Given an operatorO(0) corresponding
to a particle with spin 0, we can find the three point correlation

〈ϕk1ϕk2O(0), k3〉 (6.1.2)

by Fourier transforming the expression given in Equation 5.1.5. However, the particles we hope to
observe by looking at the large scale structure of the night sky may not be scalars. We should look
for the corresponding expressions for higher spin particles, and this is possible by using spin raising
operators. In particular, it turns out that there is an operator S12 such that the three point correlation
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of two inflatons with a spin one particle can be related to the three point correlation of two inflatons
with a scalar of the same conformal dimension. We can write this schematically via

〈ϕϕO(1)〉 = −
2

∆O

iS12〈ϕϕO(0)〉, (6.1.3)

where we have suppressed the momentum indices, and we have defined the spin raising operator

iS12 = k2z
i
3

[
(∆3 + S3 − 1)Ki

32 +
1

2
ki3K

j
32K

j
32

]
(6.1.4)

Ki
32 = ∂ki3 − ∂ki2 , (6.1.5)

where zi3 is the polarization of the O(1) and S3 = 1 is its spin. The derivation of this operator and its
generalizations are studied thoroughly in [4]. The four point function corresponding to the exchange
of a particle with spin S can schematically be written as

F̂S =
S∑

λ=0

P
(λ)
a1...aS ,b1...bS

Sa1 ...SbN F̂0 =
S∑

λ=0

ΠS,λD(S,λ)
u,v F̂0, (6.1.6)

where λ indexes the polarizations of the spinS particle, P is a polarization tensor, and the polarization
sums ΠS,λ and differential operators D(S,λ)

u,v can be found in [3].

As in Equation 5.2.3, the soft limit u→ 0 will again give us a way to probe the properties of
new particles, or even particles with which we are already familiar! In particular, taking the soft
limit of Equation 6.1.6 gives us

lim
u→0

F̂S ∼
∑
λ

IS,λP
λ
S (cos(θk1,k1+k2))P

−λ
S (cos(θk3,k1+k2)), (6.1.7)

where the P λ
S are the associated Legendre polynomials which tell us that the inflaton correlations

due to massive spinning exchange carry some orbital angular momentum, and IS,λ is a complicated
function which carries some additional angular information, but is unimportant for our main
punchlines. Stealing from [4], it takes the form

IS,λ = (2− δλ0)(−uv)λ cos(mψ)D(S,λ)
u,v F̂0 (6.1.8)

cosψ =
cos(θk1,k3)− cos(θk1,k1+k2) cos(θk3,k1+k2)

sin(θk1,k1+k2) sin(θk1,k1+k2)
. (6.1.9)

Let us not mislead you by presenting the form of IS,λ! The main point of Equation 6.1.7 is
that the associated Legendre polynomials, which convey angular momentum information, appear
in the correlations of inflatons due to the exchange of higher spin particles! We may thus use the
angular dependence of the inflaton correlations in the soft limit, which is related to the angular
dependence of the bispectrum of the large scale structure of the universe, to probe the spin of known
spinning particles, such as the graviton, or potential undiscovered particles in the spectrum of the
early universe.

There are more general weight raising operators which can be used to relate the four point
functions of conformally coupled scalars to those of massless inflatons of different scaling dimension.
These weight raising operators, together with our spin raising operators, can be used to derive the
inflationary bispectrum due to graviton exchange and the exchange of massive spinning particles [5],
opening up the search for new physics in the sky.
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6.2 Experimental Searches for New Physics
Finally, we are ready to stop thinking about raw mathematics and begin thinking about the

experimental and phenomenological studies that will be able to explore the physics we have been
discussing with such relish! We will steal plots, explanations, and intuition from sources such as [4],
[2] and [5] in order to coherently discuss the signatures of new physics in the sky.

We will begin by revisiting some intuition we have already presented. In particular, we will
remember that Equation 5.2.3 tells us that, in the soft limit, the oscillations of the inflaton four point
function with momentum fractions tell us about the mass of potential new particles. Stealing a
graphic from [2], this can be cutely represented as

Also, as we just discovered, the angular oscillations of the inflationary four point function encode
the spin of new particles. Another cute graphic from the same source is
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Our big punchline is that with inflation as a hypothesis, by observing the oscillations of the
correlations of the large scale structure of the universe we can deduce the corresponding correlations
of the inflaton. Using the technology of conformal symmetry, massive particle exchange, and spin
raising operators, oscillations in soft/collapsed inflationary correlations in both momentum ratios
and in the angles between momenta can reveal the existence of massive spinning particles which
existed in the early universe.

Unfortunately, this is just a toy picture. The full procedure of extracting the properties of massive
spinning particles from large scale structure is not quite the same as the simple picture we presented
above for intuition, and requires some more involved procedures. First, we are generally more
interested in the bispectrum of Equation 3.2.6 than in the four point correlations of the inflaton or of
large scale structure. This is an easy adjustment. By taking the limit k4 → 0, we may calculate the
correlations of three inflatons with an inflaton of zero energy/infinite wavelength. However, this
zero energy inflationary mode corresponds precisely to the constant background φ̄(t)! Then we can
find the corrections to the inflationary bispectrum due to massive spinning particles, and therefore
the corresponding corrections to the bispectrum of large scale structures, by taking the limit k4 → 0
and remembering that this simply gives us an extra multiplicative factor of φ̄(t) in our final answer.
Borrowing yet another cute graphic from [2], this can be represented visually and schematically as
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Finally, in this limit, one can track all of the angular and momentum ratio dependence of, say,
the galaxy bispectrum due to the presence massive spinning particles during inflation, and say what
can be seen by experiment. To our knowledge this lengthy procedure, which we will do no justice to
here, was first detailed in the phenomenological studies and forecasts of [5]. The authors of this
study found that, despite an infinite number of complications in the experimental setup relative to the
simple picture we have presented, correlations in observations of the galaxy bispectrum would be
able to single out non-Gaussianities that could point the way to new physics in the form of massive
spinning particles.

The authors of [5] forecasted the ability of two upcoming spectroscopic experiments to
probe these non-Gaussianities in the bispectrum. These exciting new experiments, the Dark
Energy Spectroscopic Instrument (DESI) [6] and EUCLID [7], will measure the three dimensional
distribution of cosmic structures in a wide solid angle by using spectroscopic redshifts of galaxies
and distributions of galaxies. The authors of [5] performed Fisher forecasts for DESI and EUCLID
non-Gaussianity measurements in several models. In particular, they studied the local, equilateral,
and quasi-single-field non-Gaussianities (see [5] and references therein) as well as the case of new
massive particles during inflation with spins from 0 through 4. In particular, they were concerned
with the primordial non-Gaussianities encoded in the nonlinearity parameter fNL, defined by

fNL ≡
5
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Bζ(k, k, k)

P 2
ζ (k)

. (6.2.1)

They call the local, equilateral, quasi-single-field, and spin 2-4 non-Gaussianities by the names
f loc
NL, f

eq
NL, f

qsf
NL, f

s=2
NL , f

s=3
NL , and f s=4

NL , respectively. EUCLID would also be able to measure the
effects of matter perturbations on the galaxy bispectrum. Going up to quadratic order in matter
perturbations, we may write

δg = b1δm +
1

2
b2δ

2
m + δK2 (Kij)

2 , (6.2.2)

where δg is the galaxy overdensity, δm is the matter density, and Kij is the traceless tidal matter
tensor and defined by

Kij =

(
∂i∂j
∂2
− 1

3
δij

)
δm(x). (6.2.3)

Using both analytic and numerical results, they forecasted that EUCLID and DESI would
perform comparably in a search for non-Gaussianities in the galaxy bispectrum due to massive
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Figure (6b.1): 1-σ confidence ellipses for primordial non-Gaussianities in the EUCLID survey.
In particular, assuming that EUCLID measures certain values for parameters of primordial non-
Gaussianity, the plots show the errors we expect EUCLID to report. While there are various technical
details of these plots which we will refer to [5], it is fun to note that the errors in the measurements
of non-Gaussianities are small enough that we expect EUCLID has the potential to search for new
massive spinning particles. The orange (inner) and blue (outer) contours correspond to choosing
kmax = 0.15 h Mpc1 and kmax = 0.075 h Mpc1 at z = 0, respectively, where kmax indicates the
maximum momentum modes used in the calculation of the galaxy bispectrums.

spinning particles. We show their forecasted 1-σ confidence ellipses for EUCLID measurements in
a variety of scenarios in Figure (6b.1). They reached the exciting conclusion that these upcoming
experiments would be able to search for particles with masses comparable to the Hubble scale
during inflation which generate non-Gaussianities with fNL & 1, providing us with a smoking gun
signature for new particles during inflation and measuring their masses to within tens of percent!

Of course, the strength of the non-Gaussianity will depend on the strength of, for example, the
interactions between the inflaton and the new particles, and we expect that the fNL generated by
new particles during inflation will be largely model dependent. With this in mind to temper these
thrilling results, we remember again that [5] has shown that DESI and EUCLID, which we hope
will put out new experimental results in the next three to four years, will be able to probe motivated
parameter regions of physics far earlier and far more energetic than humanity has ever been able to
probe before.

7 Conclusions and the Path Ahead
The realm of cosmological collider physics provides us with exciting new ways to search for

new physics at massive energy scales, without ever colliding a pair of protons. The hypothesis of
inflation leads to an approximate conformal symmetry which governs our universe, tells us about
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the form of inflationary correlations, and can potentially sift through the large scale structure of our
universe to tell us about physics only five orders of magnitude below the Planck scale.

In these notes, we reviewed how single field, slow-roll inflation leads to new symmetries of our
universe, how perturbations of the inflaton field contribute to the large scale structure of the universe
today, and how traditional model dependent methods of discussing inflationary perturbations
with quantum mechanics leave something to be desired. We explored conformal symmetry as an
alternative approach, leaving behind the potentially complicated and arbitrary time evolution of
quantum mechanics and deciding to discuss only the end of time. We discovered that the inflaton
behaved like a conformal primary, which allowed us to open up the rich toolkit of conformal field
theory and Ward identities to explore lower point correlations of the inflaton. We showed how the
physics of conformally coupled inflationary four point correlations could be fixed in both effective
field theory and in the presence of new particles with which the inflaton could interact. Indeed,
in the presence of certain interactions we were able to write down a complicated but unique form
for the four point function, which we then generalized to more general interactions, flat space, the
collapsed limit, and even different spins. Finally, we explored exciting new experiments which
will be able to use the technology we developed to explore the spectrum of our universe in ways
inaccessible to any experiments before them.

The results we have presented have opened many pathways for future exploration. The simplest
direction for us, of course, is exploring and explicitly calculating the rich structures which we only
briefly mentioned and lead to the effects of particles with different masses and spins on inflationary
correlators. On the cutting edge however, there is far more to do. It will be important to perform
more phenomenological studies to see exactly what our new technology will tell us about what
we can determine from looking at the night sky in future experiments such as DESI and EUCLID.
Furthermore, in de Sitter space, little is known about the physics of graviton correlators beyond
their three point functions, and the extension of our scalar technology to graviton correlations
will be able to shed light on physics we do not understand while simultaneously opening further
directions of study. The exploration of quantum mechanical loop effects on the correlations we
explored, as well as their consistent UV completions, is poorly understood and another open area of
study. Finally, the connections between the correlations we explored in our notes and the physics of
scattering amplitudes is deep, murky, and tantalizing, and has led to the study of rich new structures
in mathematics, gravity, and quantum field theory.

I hope that I have left you with a sense of the flavor of the cosmological collider, a lingering
excitement for the future experiments and theoretical efforts that will reveal extraordinary features
of the fundamental structures of our universe, and most importantly, some unanswered questions.
This was a thrilling journey for me, and I would be grateful for any comments!
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A Annoying and Messy Calculations

If you think this Universe is bad, you should see some of the others.

Phillip K. Dick

A.1 Bunch-Davies Mode Functions for Massive Inflatons
The equation of motion of a massive scalar field in de Sitter space is a generalization of the

Klein-Gordon Equation, which includes effects from the expansion of the universe. It takes the form

φ′′ − 2

η
φ′ −∇2φ+

m2

H2

φ

η2
= 0, (A.1.1)

where primes denote derivatives with respect to te conformal time η.

Moving to momentum space, we have the corresponding equation

η2φ′′
k(η)− 2ηφ′

k(η) +

(
k2η2 +

m2

H2

)
φk(η) = 0. (A.1.2)

This doesn’t look terribly familiar yet, but we can make it more friendly by writing

φk(η) = η∆0f(η)k (A.1.3)

which yields

η2f ′′
k (η) + 2(∆0 − 1)ηf ′

k(η) +

(
k2η2 +

m2

H2
+∆2

0 − 3∆0

)
f(η) = 0. (A.1.4)

Picking ∆ = 3/2 yields a Bessel’s equation for f(η),

η2f ′′
k (η) + ηf ′(η) +

(
k2η2 − (iµ)2

)
f(η), (A.1.5)

where

µ2 =
m2

H2
− 9

4
(A.1.6)

We can see that the full solution for φ(η) is

φk(η) = c1H
(1)
iµ (−kη) + c2H

(2)
iµ (−kη), (A.1.7)

where H(1) and H(2) are Hankel functions of the first and second kind, respectively.
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As discussed in the text, the positive frequency modes of a massless scalar should behave during
early times as

φ
(m=0)
k (η)e−ikη = i

H√
2k3

(1 + iηk) e−ikη η→−∞−−−−→ −H
η

√
2k e−ikη. (A.1.8)

To reproduce this behavior with our massive mode functions, which is referred to as using
Bunch-Davies initial conditions, we set c2 = 0, and set c1 such that

φk(η) =
H
√
π

2
e−

π
2
µ+iπ

4 (−η)3/2H(1)
iµ (−kη) η→−∞−−−−→ −H

η

√
2k e−ikη. (A.1.9)

The early time behavior then tells us about the scaling dimensions of these massive modes at the
end of time. We have in particular that

lim
η→0

H(1)
α (x) = h+x

α + h−x
−α (A.1.10)

lim
η→0−

φk(η) = C+η
∆+ + C−η

∆− (A.1.11)

∆± =
3

2
±
√

9

4
− m2

H2
=

3

2
± iµ, (A.1.12)

where we have used the small argument expansion for the Bessel functions of the first kind and the
expression for the Hankel functions in terms of the Bessel functions to look at the small argument
expansion of the Hankel functions, leaving the coefficients h+, h−, C+, and C− undefined. These
coefficients will not be important for our arguments. Instead, we will be interested in only the
scaling behavior of the late time modes; we want to find the scaling dimension of the inflaton!

If iµ is real and positive, which occurs for 0 ≤ m2 ≤ 9H2/4, then we see that at early times, the
mode which scales with η∆− dominates. This means that inflaton behaves like a conformal primary
at late times as η approaches zero, with the corresponding scaling dimension

∆− =
3

2
−
√

9

4
− m2

H2
. (A.1.13)

On the other hand, it is often simpler to compute the correlation functions of the part of the φ(η)
operator which obeys the subleading scaling with ∆+ = 3−∆−. Indeed, this is often what people
deal with in the literature, and thus what we explore in the main text above. Let us define O+ and
O− to be the corresponding operators with late time conformal scaling dimensions ∆+ and ∆−,
respectively. We often call O− the shadow of O+. They are related in momentum space by

〈O−(k1)...O−(kN)〉′ =
〈O+(k1)...O+(kN)〉′

(k1...kN)2∆+−3
, (A.1.14)

where the prime indicates that we have stripped off the momentum conserving delta function.

To restate our main punchline, we have found that the inflaton has a piece which dominates at
late times, and behaves like a conformal primary with scaling dimension ∆−. We defined O− as the
operator piece of φ whose scaling dimension is ∆−. For computational simplicity, however, in the

27

https://www.math.colostate.edu/~shipman/47/volume2a2010/Sekeljik.pdf#page=2&zoom=175,0,500
https://www.math.colostate.edu/~shipman/47/volume2a2010/Sekeljik.pdf#page=8&zoom=175,0,350


Notes on the Cosmological Collider Sam A.

main text we calculate the correlation functions of the subleading piece, O+, and implicitly use the
scaling dimension ∆ ≡ ∆+. We can then obtain the behavior of the correlations of the O− through
complicated procedures such as the shadow transform [3]

O−(k) = 〈O−(k)O−(−k)〉O+(k) (A.1.15)

Since we are interested in the late time behavior of inflaton correlations, this will give us the
dominant pieces we will need to gain understanding of the large scale structure of the universe
predicted by inflation.

A.2 Conformally Coupled Scalars
Our goal is to describe scalar fields such as the inflaton in curved spacetime. Ignoring potentially

more complicated interactions, the action for our scalar field takes the general form

Sscalar =
1

2

∫
d4x
√
−g

[
1

2
∇µφ∇µφ−m2φ2 − ξRφ2

]
, (A.2.1)

with ξ a number which provides a new parameter to describe our theory.

The theory with ξ = 0 is called minimally coupled, since the scalar does not have this additional
coupling to gravity. On the other hand, in four dimensions, we actually have an enhanced symmetry
in the limit m2 → 0, ξ → 1

6
, in which we have an invariance under conformal symmetry which

locally rescales the metric,

gµν(x)→ Ω2(x)gµν(x). (A.2.2)

In particular, the equation of motion for φ which arises from this action takes the form(
∇µ∇µ +m2 + ξR

)
φ = 0. (A.2.3)

Under local rescaling of the metric by Ω2(x), the equations of motion become(
∇µ∇µ + Ω(m2 + ξR) +

1

6
R− 1

6
ΩR

)
φ = 0. (A.2.4)

Clearly, if ξ = 1
6
, the equations of motion remain unchanged under this conformal transformation of

the metric in four dimensions. In d spacetime dimensions, the corresponding conformal coupling is

ξ =
d− 2

4(d− 1)
. (A.2.5)

As physicists we love symmetry, and so conformal coupling is already well motivated.
Furthermore, there are arguments that pathologies emerge for scalars which are not conformally
coupled. It is possible for the signals carried by massive scalars which are not conformally coupled
to travel at the speed of light when

m2 + (ξ − 1

6
)R(x) 6= 0. (A.2.6)
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We say that the massive scalar propagates along the light cone in regions of spacetime which satisfy
this condition, which baffles our intuition that only massless signals can move at the speed of light
[8].

For this reason, conformal coupling is a common choice; there are arguments to be made that it
is a “better” or more motivated choice than minimal coupling [9]. In the full quantum field theory,
indeed, renormalization will produce counterterms with ξ 6= 0, and ξ = 1

6
is a fixed point of the

renormalization group flow. In other words, we expect that corrections to ξ due to quantum effects
will be proportional to some power of (ξ− 1

6
), a principle known as ’t Hooft or technical naturalness,

such that it is technically natural for ξ to take the value 1
6
.

Finally, let us address what this means for the inflaton in de Sitter space. In d dimensional de
Sitter space, the curvature is constant and negative, and takes the form

R = d(d− 1)H2 d=4−−→ 12H2. (A.2.7)

This means that a conformally coupled inflaton actually behaves as if it has a mass of

meffective, conformal coupling = 2H2. (A.2.8)

A.3 Constraining Conformal Correlators
Consider two scalar operators O1(x) and O2(y).

1. Notice that the vacuum should remain invariant under the action of the conformal group, so
that

[Ki,O(x)] =
(
2xi
(
∆1 + xi∂

i
)
+ x2∂i

)
O(x) (A.3.1)

implies

〈[Ki,O1(x)O2(y)]〉 = 0, (A.3.2)

(A.3.3)(
2xi

(
∆1 + xj∂

j
(x)

)
+ 2yi

(
∆1 + yj∂

j
(y)

)
− x2∂(x)i − y2∂

(y)
i

)
〈O1(x)O2(y)〉 = 0 (A.3.4)

Inserting the explicit form (5.1.1) into the above equality, and recalling that

∂i(x)

(
C

|x− y|∆1+∆2

)
= −C (∆1 +∆2) (xi − yi)

1

|x− y|∆1+∆2+2
(A.3.5)
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so that for C 6= 0 we must have(
2xi

(
∆1 −

∆1 +∆2

|x− y|2
(x2 − x · y)

)
+ 2yi

(
∆2 −

∆1 +∆2

|x− y|2
(y2 − x · y)

)
(A.3.6)

+
∆1 +∆2

|x− y|2
(
x2(xi − yi) + y2(yi − xi)

))
(A.3.7)

=2xi∆1 + 2yi∆2 −
∆1 +∆2

|x− y|2
(
2xix

2 + 2yiy
2 − xix2 − yiy2 + yix

2 − xiy2 − 2(xi + yi)x · y
)

(A.3.8)

= 2xi∆1 + 2yi∆2 −
∆1 +∆2

|x− y|2
(
xix

2 + yiy
2 + yix

2 + xiy
2 − 2(xi + yi)x · y

)
(A.3.9)

= 2xi∆1 + 2yi∆2 − (xi + yi)
∆1 +∆2

|x− y|2
(
x2 − 2x · y + y2

)
(A.3.10)

= (∆1 −∆2)(xi − yi) = 0 (A.3.11)

This equation must hold for all values of xi, yi. Then for nonzero two-point correlators, we
must have that

∆1 = ∆2 (A.3.12)

Great!

2. Notice that for a primary scalar operator, a conformal transformation x → x′ with
∂(x′)i/∂xj = Ω(x′)Ri

j(x
′) with R ∈ SO(d), and a unitary representation U of this

transformation, we may write

gij(x)→ g′ij(x
′) = Ω2(x)gij(x) (A.3.13)

UO(x)U−1 = Ω(x′)∆O(x′) (A.3.14)

Under such a transformation, we recall that

〈O1(x
′)O2(y

′)〉 = C

|x′ − y′|∆1+∆2
=

C

|Ω(x′)Ri
j(x

′)xj − Ω(y′)Ri
j(y

′)yj|∆1+∆2
(A.3.15)

and also that

〈O1(x
′)O2(y

′)〉 = 1

Ω(x′)∆1Ω(y′)∆2
〈UO(x)U−1UO(y)U−1〉 = 1

Ω(x′)∆1Ω(y′)∆2

C

|x− y|∆1+∆2

(A.3.16)

Finally, we remember that the distance between two points transforms under conformal
transformations as

|x− y| = |x′ − y′|√
Ω(x′)Ω(y′)

. (A.3.17)
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This is clearly true for rotations and translations (for which Ω = 1) and pure dilatations
(for which R = 1). Since a special conformal transformation is the result of a inversion,
translation, and inversion, and the result holds for translations, it suffices then to check that this
property holds for inversions, as the combination of inversions, translations and dilatations
generates the conformal group. In such a scenario, R = 1 and

xi → x′i =
xi
x2

=⇒ Ω(x′) = |x′|2 = 1

x2
. (A.3.18)

We may see then that

|x′ − y′|√
Ω(x′)Ω(y′)

= |x||y| ·
∣∣∣∣ xx2 − y

y2

∣∣∣∣ = ∣∣∣∣ |x||y||x|2
x− |x||y|

|y|2
y

∣∣∣∣ = |y − x|. (A.3.19)

Then

1

Ω(x′)∆1Ω(y′)∆2

C

|x− y|∆1+∆2
=

1

(Ω(x′)Ω(y′))
∆1
2

+
∆2
2

C

|x− y|∆1+∆2
(A.3.20)

Since this holds for all x′, y′, we may see that the exponent of Ω(x′) in the left- and right-hand
sides must match, and hence that

∆1 =
1

2
∆1 +

1

2
∆2 (A.3.21)

implying

∆1 = ∆2 (A.3.22)

as desired. Cool!

3. Consider now the ansatz

〈O1(x1)O2(x2)O2(x3)〉 =
f123

xa12x
b
23x

c
31

, (A.3.23)

where, for example, x12 = |x1 − x2|. We may again use the transformation property of the
previous section to see that

(Ω(x1)Ω(x2))
a
2 (Ω(x2)Ω(x3))

b
2 (Ω(x1)Ω(x3))

c
2 = Ω(x1)

∆1Ω(x2)
∆2Ω(x3)

∆3 (A.3.24)

yielding

2∆1 = a+ c, 2∆2 = a+ b, 2∆3 = b+ c, (A.3.25)

and thus

a = ∆1 +∆2 −∆3, b = ∆2 +∆3 −∆1, c = ∆1 +∆3 −∆2. (A.3.26)

Great!
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