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Abstract
In this document we begin to approach the interesting phenomenon of confinement, flux tubes,

and the persistent field solutions that make them possible. We begin with an introduction to Dirac
strings and develop the intuition to discuss the vortex lines that occur in Higgs-type models. We draw
some parallels between Higgs models and the Landau-Ginzburg theory for Type II Superconductors.
After further discussing the relation between vortices, strings, and the mass of the photon in confining
phases, we sketch the classic proof of confinement in abelian gauge theories in 2+1 dimensions first
presented by Polyakov in 1977, and discuss confinement in higher dimensions. We then go on to
discuss the same notions of confinement using the language of lattice field theory, and discuss a simple
way to perform lattice calculations. We use this in an attempt to demonstrate confinement in 1+1
dimensions. While we are not successful, there is no failure as we have gained much knowledge along
the way.

Introduction
The phenomenon of confinement of particles emerges in a variety of areas in physics. While we will express
a more motivated and rigorous definition later, confinement between two particles simply occurs when we
cannot separate them without using an infinite amount of energy. The most notable emergences of confine-
ment in physics are the confinement of quarks in hadrons at low energies and the confinement that occurs
in flux tubes in type II superconductors. The phenomenon of flux tubes in type II superconductors is
very well studied, and was part of what won Nobel prizes for Lev Landau (1962) and Vitaly Ginzburg and
Alexei Abrikosov (2003, along with Anthony Leggett). In fact there has also been a Nobel prize related to
the phenomenon of quark confinement – the 2004 Nobel prize went to David Gross, H. David Polizter, and
Frank Wilczek for showing that the conditions for asymptotic freedom (negativity of the beta function)
are satisfied for QCD in the framework of the Standard Model. This began to explain the phenomenon of
quark confinement, as we discovered that the coupling between quarks was very strong at the energy scales
that we are familiar with in our everyday lives, explaining why we cannot see the presumably confined
color charges.

With all these Nobel prizes going around, one might hope that we have a good understanding of con-
finement! Unfortunately, this is not quite the case. Rather, while we have many good motivations for
confinement (and confinement can be proven to occur in non-abelian gauge theories in 2+1 dimensions,
as we will see), the confinement that ostensibly occurs between quarks in our universe does not yet have
a satisfying and rigorous explanation. While this document will certainly not fix this issue, we begin to
explore the variety of interesting historical developments regarding confining theories. In particular, in
Section 1 we first build intuition for monopoles and strings, and discuss how they emerge in the Ginzburg-
Landau theory. We then discuss abelian Higgs models, rightfully known as the relativistic generalization
of the Ginzburg-Landau theory, in Section 2, and show how monopoles and string like solutions emerge
in their own right as we change the order parameter to a fully fledged Higgs field. In this section, we also
sketch a proof of Polyakov’s 1977 remarkable result that confinement occurs in the Georgi-Glashow model
with an SU(2) gauge group (i.e. a theory electroweak forces) in 2+1 dimensions. We go on to discuss
the spiritual analogues of these string like solutions, as well as confinement, using the language of lattice
theory in Section 3, ending with a homemade lattice simulation in 1+1 dimensions.

As a quick note, we will be using ~ = c = 1 and the + - - - metric throughout this document (con-
tradicting most if not all of the literature). We hope we don’t offend any readers by this choice.

1 Dirac and ’t Hooft-Polyakov Monopoles
For the sake of the author, and for the sake of building intuition, we begin with a digressive discussion of
magnetic monopoles, in which we draw almost entirely from [2]. We will see that the understanding we
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develop here will serve us well in our later discussion. However, the discussion here is mostly an exercise
for the author, and can be completely skipped.
Let’s begin with the basics. The notion of electromagnetic duality states that Maxwell’s equations, in the
presence of no source, are invariant under the transformation ( ~E, ~B) → ( ~B, ~−E). We can write this in
smoother notation for reasons of vanity by writing this in terms of the usual field strength tensor and its
dual: F µν and (∗F )µν = 1

2
εµνρσFρσ where the factor of 1

2
is introduced to cancel additional counting of

permutations introduced by our ε. Now Maxwell’s equations can be written in terms of these new objects
in the familiar way as ∂µF µν = jν , ∂µ(∗F )µν = 0, where we have added in a source for the electric field,
j. However, if we want to modify Maxwell’s equations to add in a magnetic charge, we must add in a
magnetic source, which we will call k. In particular, we will have ∂µF µν = jν , ∂µ(∗F )µν = kν . These are
clearly invariant under the duality transformation, F → ∗F, ∗F → −F, j → k, k → −j.

1.1 The Dirac String

As we will see, there is something missing from this picture. In particular, we do not have enough degrees
of freedom with a single gauge field (the one form field A with F µν = (dA)µν = ∂µAν−∂νAµ) to completely
describe the full system of independently sourced electric and magnetic fields. Consider the magnetic field
provided by a single magnetic monopole of charge g:

Bi(~r) =
g

4π

ri
r3

(1.1.1)

We also have that Bi = 1
2
εijkFjk = (∇× ~A) i by the usual definition, so one should be able to imagine a

vector potential ~A that in turn yields the magnetic field. This is in general not possible without ending
up with a 1 dimensional singular region where the vector potential is not defined. For example,

~A± = ± g

4πr

1∓ cos(θ)
sin(θ)

φ̂ (1.1.2)

both generate the desired magnetic field, in the sense that ∇× ~A = ~B, in the regions where they are
defined. However, it is clear that A+ is not defined on the negative z axis, where θ = π. Similarly, A− is
not defined on the positive z axis, where θ = 0. In principle, one can add in a separate gauge field that
eliminates this ambiguity and deals with the magnetic field separately (see, for example, [3] and Chapter
1 of [4]).

However, it turns out that some interesting phenomena emerge if we do not do so, and instead proceed
with what we have. One striking feature of these fields is that they are gauge equivalent, but the gauge
transformation that hops between them is not continuous! In particular, we have that

~A+ = ~A− +∇χ⇒ ∇χ =
g

4πr sin(θ)
φ̂ (1.1.3)

which is easily seen to be satisfied by
χ =

g

2π
φ

Of course, χ depends on the azimuthal angle and so is not single valued. In fact, it shouldn’t be, since
we can describe a vector potential by stitching together A+ in the top hemisphere surrounding θ = 0 and
A− in the bottom hemisphere, and see

g =

∫
Ω

d3x∇ · ~B =

∫
Σ

d~S · ~B (1.1.4)

g =

∫
Σ+

d~S · ~B +

∫
Σ−

d~S · ~B (1.1.5)
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where we have used Stokes Theorem, Σ = ∂Ω, and Σ+ and Σ− are the boundaries of the top and bottom
halves of the space, respectively, and are hence both half hemispheres. We then see that the boundaries
of Σ+ and Σ− are the same, but with opposite orientation. We define ∂Σ+ = −∂Σ− = ω, with ω a circle
in the limit of infinite radius enclosing the z axis. and once again use Stokes Theorem to write

g =

∫
Σ+

d~S · (∇× ~A+) +

∫
Σ−

d~S · (∇× ~A−) (1.1.6)

g =

∫
w

d~l · ( ~A+ − ~A−) =

∫
w

d~l · ∇χ = χ|2π0 (1.1.7)

If χ had been continuous, then the charge enclosed by the entire surface would have been zero necessarily.
Only the nontrivial case of discontinuous χ allows us to show that g 6= 0 simply through repeated appli-
cation of Stokes Theorem.

So we see that there are some weird behaviors that are introduced by this singularity. One way to
deal with them is to directly introduce a singular region that is attached to the monopole. In particular,
we can introduce the Dirac String, an infinitely long, infinitely thin solenoid that starts at the origin and
moves along the (say) positive z axis. It will create a magnetic field

~B =
g

4πr2
r̂ − g δ(x)δ(y)Θ(z)ẑ (1.1.8)

where g = In, the current going through the solenoid times the number of turns per unit length, but it
also represents the charge of the "monopole" on one end of the Dirac String. We see that the monopole
has the magnetic field that we would expect it to, excluding the singularity on the positive z axis. The
whole configuration satisfies ∇ · ~B = 0. Now the idea is that we should not be able to ever observe
the Dirac String itself – we should only see visible effects from the monopole. Noting that adding in an
external electromagnetic field causes the wavefunction of a nonrelativistic particle traveling along a certain
path and ending at ~x to gain a path dependent phase ψ(~x) → exp[−ie

∫ ~x
path

~A · d~x]ψ(~x) 1, the author’s
favorite way to demonstrate the so-called Dirac quantization condition by using the fact that the modulus
squared of the wavefunction of two particles moving around the positive z axis in opposite directions should
be independent of whether or not the Dirac String is present! In other words, the superposition of the
two states should yield the same physical results with or without the Dirac String. If ψ1 represents the
wavefunction of the particle moving around the positive z axis around one contour, and ψ2 represents the
wavefunction of the particle moving around the opposing, non-homologous path, we should necessarily
have

|ψ1(~x) + ψ2(~x)|2 =
∣∣∣exp[−ie

∫
1

~A · d~x]ψ1(~x) + exp[−ie
∫

2

~A · d~x]ψ2(~x)
∣∣∣2 (1.1.9)

Which then implies that

−e
∮

~A · d~x = 2πn⇒ eg = 2πn, n ∈ Z (1.1.10)

where the loop is going around the positive z axis, and we have used Stoke’s Theorem.
This is actuallly beautifully related to the mathematical machinery of Chern numbers and Chern

classes. In particular, a theorem due to Chern tells us that the integral of the field strength over a spatial
sphere at infinity is quantized,

c1 =
1

2π

∫
S2

Fweird ∈ Z, (1.1.11)

1This new wavefunction satisfies the Schrodinger equation in the presence of external fields. Introduction to Quantum
Mechanics by DJ Griffiths has a nice treatment of this in Chapter 10.
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where Fweird is the electromagnetic field strength with the normalization consistent with the action

S = − 1

4e2

∫
F µνFµν . (1.1.12)

In the more familiar normalization that we are used to, we have

c1 =
e

2π

∫
S2

F =
eg

2π
∈ Z, (1.1.13)

so the mathematical machinery of Chern numbers also produces the Dirac quantization condition!
Of course there are many more ways to show Dirac quantization. We refer, for example, to the first

section of [1].

1.2 ’t Hooft-Polyakov Monopoles

We now begin using Field Theory in a more cavalier fashion. In this section, we defer discussion of many
features of solitons to chapter 92 of the book [5] by M. Srednicki, and take some knowledge for granted.
In fact Dr. Srednicki goes further than we do in our discussion and further recreates similar results.
Our first example is named after its concurrent progenitors, Gerard ’t Hooft and Alexander Polyakov. In
considering the so-called ’t Hooft-Polyakov monopoles2, we begin with the Georgi-Glashow SO(3) model,
again following almost exactly the narrative of [2]. In this model, we begin with an SO(3) gauge group
and a Higgs field in the adjoint representation and with vev v:

L =
1

2
(Dµφ)a(Dµφ)a − 1

4
F µνaF a

µν −
λ

4
(φ2 − v2)2

F µν a = ∂µAνa − ∂νAµa − eεabcAµbAνc (1.2.1)

(Dµφ)a = ∂µφa − eεabcAµbφc

where early roman indices (a, b, c) refer to the gauge group and greek indices refer to the Lorentz group.
We now choose to expand around the ground state 〈φ〉 = (v, 0, 0). Clearly, we break two generators (the
unbroken one corresponding to rotations around the x axis), to take SO(3)→SO(2), and hence gain two
massless scalars that take us around the sphere of minima along with a massless gauge boson. Alternatively,
we gain two massive vector bosons and a massless gauge boson. In order to look for soliton solutions with
finite energy, we enforce the temporal gauge condition A0 = 0, along with

Aai ∼
1

r

near r =∞. This in turn enforces (Diφ)a ∼ o(r−1). We look for a static soliton solution with limr→∞ φ =
vr̂. The energy of the system is hence

E =

∫
d3x H =

∫
d3x
[1
2

(Diφ) 2
a +

λ

4
(φ2 − v2)2

]
(1.2.2)

Next, ’t Hooft and Polyakov made the ansatz φa = raH(ξ)
er2

, Aia = −εaij r
j(1−K(ξ))

er2
, with ξ = evr. Our

previous restrictions on the fields for our monopole also yield limξ→∞H(ξ) ∼ ξ and limξ→∞K(ξ) ∼ 0. The
energy becomes

E =
4πv

e

∫
dξ

ξ2

[
ξ2(

dK

dξ
)2 +

1

2
(ξ
dH

dξ
−H)2 +

1

2
(K2 − 1)2 +K2H2 +

λ

4e2
(H2 − ξ)2

]
(1.2.3)

2The ’t Hooft-Polyakov soliton solution, which creates a magnetic field like that of a magnetic monopole through topo-
logical trickery, was first discovered independently by ’t Hooft and Polyakov in their original papers [6].
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We could easily access equations of motion for K and H by minimizing the energy, which yield a mass
(energy) for the soliton through numerical integration

M ∼ 4πv

e
(1.2.4)

However, the most interesting thing is that we here get a magnetic field that looks exactly like that of the
Dirac monopole, without the singularity! In particular, working everything out, we get

F ija = εijk
rkra

er4
(1.2.5)

The unbroken generator is labeled by the index 1, as it corresponds to rotations about the x axis. Hence
Aµ1 still describes a massless gauge boson/photon. Then we can identify Bi = 1

2
εijkF jk

1 , which yields at
large distances

~B = − g

4π

r̂

r2
, g =

4π

e
(1.2.6)

exactly the magnetic field we expect from a monopole, and with a charge consistent with Dirac quantization
no less! We have hence used soliton solutions to find magnetic monopoles in the method of ’t Hooft and
Polyakov.

The topics we have discussed are interesting and merit further discussion; however, we proceed now to
the main point of this document: confinement. We will see, especially when discussing Polyakov’s 1977
proof, why our intuition for monopoles and solitons will serve us well.

2 The Road to Abelian Confinement
We now begin approaching the topic of confinement in abelian theories. In particular, we will see how
theories with an abelian gauge group and a Higgs boson will be similar to Ginzburg-Landau theories of
superconductors. We will further discuss the emergence of flux tubes in such models, and discuss their
quantization. We will further discuss briefly the relevance of our discussion to hadronic physics before
sketching Polyakov’s remarkable proof of confinement in 2+1 dimensions in abelian theories. In this
section, we draw more than heavily from a variety of sources, the most notable being [7, 9], and the rest
referenced as they become relevant.

2.1 Brief Review of the Ginzburg-Landau Theory

The Ginzburg-Landau theory is a phenomenological theory of superconductivity in which the free energy
F is minimized. In particular, we have F =

∫
d3xF , with

F =
1

2m
|(−i∇− q ~A)Ψ|2 + α|Ψ|2 +

β

2
|Ψ|4 + unimportant terms for our discussion (2.1.1)

where Ψ = Ψ(x) is a field in the relevant space, and q is the charge of charge carriers in the theory. For
us,

q = 2e

as the charge carriers will be Cooper pairs of electrons in the superconducting phases of a material. By
minimizing F with respect to Ψ∗, one sees

1

2m
(−i∇− q ~A)2Ψ + αΨ + β|Ψ|2Ψ = 0 (2.1.2)
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where we have assumed that the fields vanish on the boundary, and we see the emergence of a nonlinear
Schrodinger equation. In general, these parameters are phenomenological and α is generally a function of
temperature. Further, in the case of negative α, one can qualitatively see that there should be phenomena
involving spontaneous symmetry breaking. In particular, when the external fields can be taken to zero
and Ψ can be taken to be nearly constant, we see that there are a family of solutions to the equation 2.1.2,
with modulus of the order parameter |Ψ| = −α

β
> 0. This can occur, for example, as r →∞ at the spatial

boundaries of our system.
In such a case, allowing f = −βΨ/α to be the dimensionless fraction of Ψ relative to its asymptotic

value, we have

ξ2d
2f

dx2
+ f − f 3 = 0 (2.1.3)

where ξ = 1√
2m|α|

becomes a length scale known as the coherence length associated with our system,

characterizing how quickly small perturbations to the asymptotic value of Ψ vanish. We will see the
emergence of similar length scales in our treatment of abelian Higgs models.

We can also see the quantization of what F. London called the fluxoid Φ′ associated with a closed
path on a superconductor. In particular, we can define the fluxoid as the actual flux through the surface
Φ =

∮
~A · d~l plus an additional term due to current generated by the dynamics of charged particles

Φ′ =
1

q

∮
(m~v + q ~A) · d~l =

1

q

∮
~p · d~l→ nh

2e
= nΦ0, n ∈ N (2.1.4)

where in the last line we have used Bohr-Sommerfield quantization along with the fact q = 2e to show
that the fluxoid is quantized with increment the flux quantum. One can get the same result by using the
above expression along with the single valued nature of the scalar field of the Ginzburg-Landau theory via
m~v = ~p− q ~

A = ∇ϕ− q ~A and
∮
∇ϕ = 2πn, with ϕ : Ψ = |Ψ|eiϕ the phase of the complex scalar field.

Finally, it will be helpful if we briefly mention some of the ideas behind vortices, which appear in
type two superconductors. Vortices occur when the coherence length becomes sufficiently small that field
configurations become isolated in string like structures. In such a case, we can write

Ψ = −β
α
f(r)eiφ (2.1.5)

betraying the source of the name "vortex": Ψ "twists" as we move the axis of the vortex, indicated by the
extra phase that varies with the azimuthal angle φ, so that we have singular behavior along a single axis.
The field equations eventually yield, from this choice, A = A(r)φ̂, with A(r) = 1

r

∫ r
0
r′H(r′)dr′, with H the

magnitude of the magnetic field. For total flux Φ0, limr→∞A(r) = Φ0

2πr
. We also have limr→0A(r) = H(0)r

2

Using the Ginzburg-Landau equations of motion and the same definition of f = −βΨ/α, one can recreate

f − f 3 − ξ2
[
(
1

r
− 2πA

Φ0

)2f − 1

r

d

dr
(rf)

]
= 0 (2.1.6)

This should in general be solved computationally, but f ≈ tanh(vr
ξ

) for v ∼ 1 is an alright approximation:
f in general starts at zero at the center of the vortex and approaches 1 at infinity. One can additionally
use the London equations in some limits to show that the magnetic field exponentially decays at large r,
and behaves like ln(λ

r
) at small r, where λ is a scale determined by the London equations. This means

that the magnetic field is strongly peaked near the center of the vortex, but quickly decays outside of it.
We have not given a strong treatment of this last phenomenon but will discuss its relativistic analogue
with greater motivation and depth.

We end our brief discussion of the relevant facts of superconductivity, but leave much of the story out.
A solid resource on the rich mathematics and ideas behind superconductivity can be found in the book by
M. Tinkham, [8].
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2.2 Abelian Higgs

The abelian Higgs model may be considered the relativistic generalization of the Ginzburg-Landau field
theory. In the latter, one knows the existence of Abrikosov vortices, and we will briefly discuss the
emergence of analogous objects in the abelian Higgs theory. Consider first the Lagrangian with a scalar
field transforming under (say) a U(1) gauge group with charge e:

L = −1

4
FµνF

µν − |Dµφ|2 + µ2|φ|2 − λ|φ|4 (2.2.1)

with Dµφ = (∂µ + ieAµ)φ. We see quickly that the equations of motion become

D2φ = µ2φ− 2λ|φ|2φ

∂νF
µν = ie(φ†

↔

∂µφ) + 2e2Aµ|φ|2 ≡ jµ
(2.2.2)

To look for vortex solutions, we first discuss flux. The flux of the field strength through a surface in
Minkowski space is the holonomy of the gauge field around its boundary:

Φ =

∫
Fµνdσ

µν =

∮
Aµdx

µ (2.2.3)

where dσµν is a 2D surface element, and the loop integral is taken along the boundary of the first integral.
In the case of magnetic flux we can see that this can be cast as a timelike surface (Bi ∼ εijkF jk) and
Φ =

∮
~A · d~x as one might expect. Now define χ(x) by φ = |φ|eiχ, with χ(2π)− χ(0) = 2πn, n ∈ Z. Then

the equation of motion for the field strength yields

Aµ =
jµ

2e2|φ|2
+

1

e
∂µχ (2.2.4)

so that, in the case of zero current,

Φ =
1

e

∮
∂µχdx

µ =
1

e
χ|2π0 = nΦ0 (2.2.5)

where Φ0 = 2π
e

is the usual flux quantum, if we take e→ 2e as in the Ginzburg-Landau case.
Next, we will echo [7] in showing that there can be string-like solutions to the equations of motion. We

again use temporal gauge, A0 = 0, and look for static, cylindrically symmetric solutions to the equations
of motion with ~A(~r) = | ~A|ϕ̂ that create a magnetic field in the z direction. In such a case, we have flux
Φ = 2πr| ~A| and

| ~B| = 1

2πr

d

dr
Φ(r) (2.2.6)

where Φ(r) is the flux contained within a radius r of the z axis. We also have ∇ · ~A = 0. Applying all of
this and using the cylindrical form for divergence and the Laplacian, we can derive from the equations of
motion

−1

r

d

dr
(r
d

dr
|φ|) +

[
(
1

r
− eA)2 − µ2 + 2λ|φ|2

]
|φ| = 0 (2.2.7)

−1

r

d

dr
(r
d

dr
A) + |φ|2(Ae2 − e

r
) = 0 (2.2.8)
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where we have defined A = | ~A|. Though we were unable to discover any analytic solution for these

equations, if we take limr→∞ φ =
√

µ2

2λ
≡ v, then the above equations become Bessel equations with an

extra |φ|2 e
r
term at large r, and we can say that

lim
r→∞

A =
1

er
+ CK1(evr) ∼ 1

er
+ C

√
π

2evr
e−evr (2.2.9)

far from the origin. Using d
dx

(xmKm(x)) = xmKm−1(x), we then see that the magnetic field must obey

| ~B| = evCK0(evr) −−−→
r→∞

C

√
πb

2er
e−evr (2.2.10)

And the strength of the magnetic field decays exponentially as we move away from the vortex axis. Clearly,
the penetration depth is hence determined by the scale of symmetry breaking: δpen = 1

ev

As a quick note, if we had started with φ simply approaching a constant value as r approached infinity,
we could have recovered a similar form for A and then discovered that φ must have approached its vev in
the first place using it’s equations of motion.

Notice also that we can expand φ around its vev and write |φ| = v + ρ(x)√
2
. Ignoring interactions,

and the phase of φ, the real scalar ρ will pick up a mass µ and hence have classical solutions ρ ∼ e−µr,
giving us a second characteristic length of the system in the form of a Compton wavelength, determin-
ing how quickly φ approaches its vev. It is stated in [7] that in the case of a vortex solution, we take
|φ| = v(1− e−mr) so that, when the characteristic lengths of the system are roughly equal, φ vanishes near
the vortex core where the magnetic field is nonzero but approaches its vev as the field vanishes exponen-
tially.

Furthermore, after the symmetry is spontaneously broken in this way the "photon" gains a mass
mV = ev by eating the Goldstone mode. This means, at low energies/small scattering, only the s channel
diagrams contribute to scattering and we have a scattering amplitude in Fourier space

T =
−i

e2v2 + p2

In non-relativistic scattering, the Fourier transform of the potential is the scattering amplitude at lowest
order, so that we see that we get a Yukawa potential for the electromagnetic field that decays with the
same characteristic length as the magnetic field. This is just as we would expect for a superconductor,
and is put in by hand in the London theory of superconductivity [8, 9]

V (r) ∼ e−mV r

r

9



(a)

(b)

Figure 1: A simple schematic representation of A = | ~A| and φ as a function of their distance from the
z axis (as in section 2.2) in the case that their characteristic lengths are similar, along with a simple
rendition of the "flux tube" or dual string that results from such a configuration. Figure 1a displays that
the strength of the gauge field decays exponentially to zero on a scale set by the penetration depth, while
φ decays exponentially towards its vev on a scale set by the inverse mass of its ’radial’ excitations, i.e. the
excitations that take it away from its vev. The vertical axis in 1a represents the strength of the fields,
where the horizontal axis represents radial distance from the z axis. Fig 1b is purely schematic, showing
that the majority of the strength of the gauge field contributing to the action is contained within a small
stringlike structure in the limit of small penetration depth, defined in the text.

2.3 The Dual String

We now briefly discuss the existence of a string solution that follows from our discussion of the abelian
Higgs model in Section 2.2. The principle is very similar to that of the Ginzburg-Landau case. We first
note that we saw φ vanishes near the vortex core and approaches a constant value near infinity, while the
magnetic field had the reverse behavior (in particular, this is true when the characteristic lengths of the
system are chosen to be similar by tweaking the initial parameters). When we make the characteristic
length of the system small enough, by sufficiently increasing the mass of the complex scalar, then the field
strength can be said to approach a "smeared out δ function" along the z axis. One can in principle take
the vortex to infinity along one axis or make it a loop by applying periodic boundary conditions. The
argument of Nielsen and Olesen in [7] is that, since the field strength is sharply peaked near the z axis,
so is the part of the Lagrangian density that contributes to the vortex. Hence, the Lagrangian density
Lvortex should be Lorentz contracted by the speed of the string in the transverse direction so that, up to
the δ function

Lvortex ∼
√

1− v2
⊥ (2.3.1)

Using the δ function nature of the Lagrangian, we can recast the action as

Svortex =

∫
d4xLvortex ∼

∫
dtds

√
1− v2

⊥ (2.3.2)

where the integral over ds indicates an integral over the length of the string, in our case along the z axis.
Next, we allow ~x(s, t) to denote the displacement of a region of the string at a point s along the string
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length at time t. Then

~v⊥ =
∂~x

∂t
− ∂~x

∂s
(
∂~x

∂s
· ∂~x
∂t

) (2.3.3)

Svortex = T0

∫
dsdt

√
1− (

∂~x

∂t
)2 − (

∂~x

∂s
· ∂~x
∂t

)2 (2.3.4)

where we have gotten rid of the proportionality by adding in a constant with the correct units, which is
commonly referred to as the string tension, as [T0] = mass

length
up to factors that are equal to unity in our

units. This yields the well known Nambu action [10] for a string! So we see that the abelian Higgs theory
that generalizes the Ginzburg-Landau theory to the relativistic case is dual to a theory with a string
solution representing the vortex solution of the Higgs-type Lagrangian. In principle, it seems one should
be able to solve the theory by dabbling with strings and the quantum theory with string quantization. Of
course, this is not the only case where this works. There are also such vortex/dual string solutions in a
variety of theories, such as a variety of non-abelian generalizations and the Sine-Gordon theory, both of
which are discussed in [7].

2.4 Polyakov Confinement in 2+1 Dimensions

We finally approach the existing proof that confinement actually occurs. This proof is lengthy and difficult,
and we split it here into three parts. In would be dishonest to say that the author rederived all the results
here with great rigor. They are both historically and physically important and we record them for the
sake of building a more complete picture and developing intuition.

2.4.1 Part I: Fields and Monopoles

We now consider, as Polyakov did in [11], the Georgi Glashow theory with an SU(2) gauge group. In
particular, we sketch his remarkable proof that confinement occurs in 2+1 dimensions. The discussion will
be an extension of that in Section 1.2. φ will transform in the fundamental of the SU(2)'SO(3). The
Lagrangian becomes

L =
1

4
F cµνF c

µν +
1

2
(Dµφ)2 +

λ

4
(φ2 − v2)2

F a
µν = ∂µA

a
ν − ∂νAaµ + eεabcAbµA

c
ν

(Dµφ)a = ∂µφ
a + eεabcAbµφ

c

(2.4.1)

The astute may be dismayed with some of the signs in the above expressions. This is because we are
now using the Euclidean field theory rather than the Lorentzian one. Of course the two descriptions are
equivalent, but we follow this one to match the steps taken by Polyakov. As one can see fairly quickly, one
gets a massless vector (photon) field, a charged massive vector (the W boson W±) with mass mW = ev,
and a massive scalar of mass mσ =

√
2λv corresponding to massive modes of the Higgs doublet. For a

detailed review, we refer to chapters 86-87 of [5].
As before, one will have soliton configurations where φ approaches its vev at infinity and the fields

approach zero at infinity. In particular, as in Section 1.2

φa = u(r)
xa

r

Aaµ = a(r)ε abµ

xb

r

(2.4.2)

where we make the requirement as before that limr→∞ u(r) = v, limr→∞ a(r) ∼ −1/r. It turns out that
the Euclidean action takes the form S = mW

e2
η( λ

e2
), with η(0) = 4π and η(x) a known function [11]. One
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can make a singular gauge transformation to get, at large distances,

φa ≈ vδa3

A±µ ≈ 0

Fµ ≡ εµνσ∂
νA3σ ≈ 1

2

xµ
|x|3
− 2πδµ3θ(x3)δ(x1)δ(x2)

(2.4.3)

where ± denotes 1 and 2 respectively. We see that at large distances, up to a factor of the coupling,
Fµ behaves exactly like the magnetic field of a Dirac string (as in equation 1.1.8). In other words, our
singular gauge transformation can yield a Dirac string type monopole as a physical field! In general, our
total field will be a superposition of such fields, so that, at a large enough distance from each monopole

Fµ ≈
∑
i

qi
2

(x− xi)µ
|~x− ~xi|3

− 2πδµ3

∑
i

qiθ(x3 − (xi)3)δ(x1 − (xi)1)δ(x2 − (xi)2) (2.4.4)

for qi = ±1, and we consider only monopoles of unit charge since their charges are quantized (as shown in
Section 1) and so any higher charge monopole can be considered as the superposition of some number of
monopoles of unit charge.

Now, one can imagine performing the integral over 3 dimensional space to get the action by splitting
the integral into spheres of radius R ∼ m−1

W and the region outside these spheres. Outside these spheres,
2.4.4 applies, and on the inside, we can say that, up to terms of order 1

R
, each monopole contributes the

total action of the soliton S = mW
e2
η( λ

e2
)(1 + O( 1

mWR
)). Ignoring the contribution of the singular Dirac

strings to the action, we have that the region outside the spheres contributes

Sout =
1

2

∫
d3x(Fµ − F sing

µ )2 =
∑
i 6=j

qiqj
8

∫
d3x

(~x− ~xi) · (~x− ~xj)
|~x− ~xi|3|~x− ~xj|3

+O(
1

R
) ≈ π

2

∑
i 6=j

qiqj
|~x−~xj|

(2.4.5)

Then the total Euclidean action can be approximated as

S ≈ mW

e2
η(
λ

e2
)
∑
i

q2
i +

π

2

∑
i 6=j

qiqj
|~x−~xj|

(2.4.6)

2.4.2 Part II: The Measure

We now expand the fields around their classical paths:

Aµ = Acl µ + aµ φ = φcl + ϕ (2.4.7)

which yields a form for the action

S = Scl + SII

SII = Tr
[ ∫

d3x
(1

4
(Dµaν −Dνaµ) +

1

2
(F cl

µν [aµ, aν ]) +
1

2
[aµ, φcl]

2 +
1

2
(Dµϕ)2

1

2
(ϕµ2(φcl)ϕ) + (φcl[Dµϕ, a

µ]) +Dµ(φcl)[aµ, ϕ]
)] (2.4.8)

We are not quite sure what µ2 is – it could correspond to the "mass" of the Higgs in our theory, but we
do not reproduce this result ourselves as we do not understand it fully. One can perform the functional
integration by looking at the term quadratic in the fields: its eigenfunctions will determine the determinant
of the quadratic form. These eigenfunctions, according to Polyakov, satisfy

Dν(Dνa
(n)
µ −Dµa

(n)
ν ) + φ2

cla
(n)
µ − φclDµϕ

(n) + [Dµφcl, ϕ
(n)] = −Ω2

na
(n)
µ

DµDµϕ
(n) −M2(φcl)ϕ

(n) − [φcl, Dµa
(n)
µ ]− 2[Dµφcl, a

(n)
µ ] = −Ω2ϕ(n)

(2.4.9)
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Polyakov does not seem to defineM2 (until later in the paper) and we do not take on the task of reproducing
it.

One can note that a gauge transformation should leave the action invariant – as such we will certainly
have zero eigenvalues corresponding to gauge transformations. However, in general there will also be
physical zero eigenmodes. These both satisfy

a(0)
µ = Dµα(x) ϕ(0) = [φcl, α(x)] (2.4.10)

Since the two operators acting on the fields in 2.4.9 are hermitian, the eigenfunctions with nonzero eigen-
values should necessarily be orthogonal to these modes. This gives us

Tr

∫
d3x(a(n)

µ a(0)
µ + ϕ(n)ϕ(0)) = Tr

∫
d3x(a(n)Dµα(x) + ϕ(n)[φcl, α(x)]) (2.4.11)

which, by arbitration of α, yields
Dµa

(n)
µ + [φcl, α] (2.4.12)

for n 6= 0. Let us now define D̃µ to be the covariant derivative in which the field is the classical field.
Polyakov states that we can make a gauge choice that enforces

D̃µAµ + [φcl, ϕ] = 0 (2.4.13)

We can hence rewrite the usual Fadeev-Popov determinant [5]

det(∂µDµ) = det(D̃µDµ + [φcl, ϕ]) (2.4.14)

Our full path integral measure, enforcing the gauge choice and putting in the determinant in the usual
way, is

DAµDφδ(D̃µAµ + [φcl, ϕ]) det(D̃µDµ + [φcl, ϕ])

Expanding the fields and taking into account our gauge transformations, we have

Aµ = Aclµ +
∑

ξna
(n)
µ + D̃µα

φ = φcl +
∑

ξnϕ
(n) + [α, φcl]

(2.4.15)

Polyakov shows that this all yields

DAµDφ =
∏
n

dξnDα
√

det(D̃2
µ + φ2

cl) (2.4.16)

and recovers a measure in the path integral∏
n

dξnDα
√

det(D̃2
µ + φ2

cl)

After another page of work that we do not replicate, he presents the tree level result

measure = Nd/2ddR
∏
n 6=0

dξn

√
det(D̃2 + φ2

cl) (2.4.17)

where N is a normalization constant added in on the fields, and R denotes a center of mass coordinate.
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2.4.3 Part III: Correlations and Confinement

We continue to refer to Polyakov’s derivation in [11]. Now, we sketch out the rest of the proof: using the
measure 2.4.17 produced by the previous section, Polyakov demonstrates that the partition functional for
widely separated monopoles takes the form

Z =
∑
N,{qi}

ζN

N !

∫
(
N∏
k=1

d3xk)exp[−π
2

N∑
i 6=j=1

qiqj
|~xi − ~xj|

] (2.4.18)

ζ =
m

7/2
W

e
α(λ/e2)e−(mW /e2)ε(λ/e2) (2.4.19)

which is of a very similar form of the partition function of the Coulomb gas in the canonical ensemble.
With this, we can then see that the correlation functions of our Yang-Mills system with monopoles will
have similar properties to the correlation functions of the Coulomb gas. Polyakov rewrites this in the
functional form

Z =

∫
Dχ(x)exp[−πe

2

2

∫
d3x(∇χ)2]

∑
N

∑
qi=±1

ζN

N !
d3x1 · · · d3xNexp[i

N∑
i=1

qiχ(xi)]

=

∫
Dχ(x)exp[−πe

2

2

∫
d3x(∇χ)2]

∑
N

ζN

N !

(
d3x(eiχ(x) + e−iχ(x))

)N
=

∫
Dχ(x)exp[−1

2
πe2

∫
d3x
(

(∇χ)2 −M2cos(χ(x))
)

(2.4.20)

Where we have dropped vector superscripts, setM2 = 4ζ
πe2

, and we note that upon performing the functional
integration over χ by completing the square one recovers the exponent of the Coulomb gas partition
function.

One can also source the monopole fields to create a generating functional, and see that

〈eo
∫
ρ(x)ξ(x)d3x〉 =

Z[ξ(x)]

Z[0]
(2.4.21)

where ρ(x) =
∑
qiδ(x− xi) and Z[0] is the partition functional of 2.4.20. In particular,

Z[ξ] =

∫
Dχexp[−πe

2

2

∫
d3x
(

(∇(χ− ξ))2 −M2cosχ
)

] (2.4.22)

Further, we define an operator

Hµ =
1

mW

εµνσφFνσ (2.4.23)

which Polyakov states to yield

Hµ(x) =
1

2

∫
d3y

(x− y)µ
|x− y|

ρ(y)

H̃µ(k) =
2πkµ
k2

ρ̃(k)

(2.4.24)

where a tilde denotes the Fourier transform. Finally, Polyakov calculates a dictionary of correlation
functions, and uses them to demonstrate that there are so-called electric strings in the theory. In particular,
since the electromagnetic gauge field is described by A3

µ, Polyakov adds in heavy particles charged under
the EM, and calculates the expectation value of the Wilson loop around a contour C

F [C] = e−W [C] = 〈ei
∮
A3
µdx

µ〉 → e−E(R)T (2.4.25)
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where E(R) is the minimum energy of the field configuration with two particles separated by a distance
R, and the expectation value is taken in a field configuration with monopole/soliton solutions. The last
implication comes from going to Euclidean time, and we will discuss this on the lattice in the next section,
and is discussed further in [12, 15]. Using Stokes theorem and his dictionary of correlation functions,
Polyakov demonstrates that the expectation value of the Wilson loop depends linearly on the area it en-
closes, so that E(R) ∼ R. In other words, he shows that the energy of a configuration of two monopoles
increases linearly with their distance! This is the precise statement of confinement, as the particles cannot
be separated with a finite amount of energy.

We have thus incredibly briefly sketched Polyakovs impressive 1977 proof of confinement in 2+1 di-
mensions, and go on to discuss similar ideas on the lattice in the next section. In fact, at the time of
writing, confinement has not been shown for any higher dimensionality, and so the lattice is the both the
best and the only way we have developed to mathematically approach confinement as it occurs in our
universe (3+1 dimensions, in QCD).

3 Lattice Gauge Theory
Putting QFTs on the lattice is one of the most powerful computational tools we have today when it comes
to quantifying the physical predictions of QFTs. In this section, we give a brief introduction to QED on
the lattice, discuss how one can search for confinement through the use of lattice calculations, and finally
perform a simple, homemade lattice simulation of QED in 1+1 dimensions in an attempt to demonstrate
confinement numerically (to ruin the punchline, we are not successful – we discuss this further in Section
3.3). In this section, we again draw from a variety of resources, and most heavily from An Introduction to
the Confinement Problem by Greensite [15] and the notes in [16].

3.1 Gauge Symmetry on the Lattice

Before diving straight into a U(1) lattice gauge theory, the second simplest lattice gauge theory, we first
discuss the simplest lattice gauge theory – the dual Ising model. The Hamiltonian of the Ising model is
given by the usual linking between nearest neighbors:

H = −J
∑
x

D∑
µ=1

s(x)s(x+ µ̂) (3.1.1)

with J the strength of the interaction. We have summed first over all sites on the lattice, and then on
all directions µ̂ so that each spin s(x) is linked to its neighbors through the Hamiltonian. The partition
function is given by the sum over possible configurations of the exponent of the Hamiltonian in the usual
way

Z =
∑
{s(x)}

e−βH({s(x)}) (3.1.2)

with the probability of a certain configuration near equilibrium given by

P ({s(x)}) =
1

Z
e−βH({s(x)}) (3.1.3)

Of course, as β → ∞, the states that contribute reasonably to the partition function will have lower
and lower energy and the system will become more ordered, whereas in the limit β → 0 all states will
contribute equally to the partition function and the system will in general be more disordered.

There is also an overall global Z2 symmetry of the system, since both P and Z are invariant if we take
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s(x) → zs(x), with z everywhere the same and z = ±1. In other words, we can flip all the spins of the
system and the energy will remain unchanged.

However, this is not the end of the story. We have seen that there is a lattice theory with a global
Z2 symmetry, but it turns out this theory is dual to a theory with a local Z2 symmetry, known as the
gauge-invariant Ising model or Z2 lattice gauge theory. In this theory, the Hamiltonian is not given by
the spins on the sites but instead by the values of new variables known as links, which exist between sites
on the lattice. A link connects two adjacent points on the lattice, and we write them as sµ(x), denoting
the link between the adjacent sites x and x + µ̂. The Hamiltonian will be a sum over what are known as
plaquettes, a multiplication of links that go around a square of unit size and come back to the original
point. In other words, a plaquette at a point x satisfies

pµν(x) = sµ(x)sν(x+ µ̂)sµ(x+ ν̂)sν(x) (3.1.4)

where µ̂ and ν̂ are any two orthogonal vectors of length equal to the lattice spacing. We can see fairly simply
that the plaquette at point x is invariant if we make the local transformation sµ(x)→ z(x)sµ(x)z(x + µ̂)
where we have upgraded z to a locally valued function equal to ±1 on each point in the lattice. We can
therefore write a gauge invariant Hamiltonian

H = −J
∑
x

D∑
µ=1

∑
ν<µ

pµν(x) (3.1.5)

We further define a gauge invariant Wilson loop as the product of links along a loop on the lattice. The
value of the Wilson loop depends on its path, and we can write

W (P ) =
∏

(x,µ) on P

sµ(x) (3.1.6)

where P denotes the path along which the Wilson loop is taken. This becomes useful in our later discussion.

Having built some intuition, we know move to the case of a U(1) gauge theory. Here, we define

Uµ(x) = eiaeAµ Aµ(x) ∈ [− π

ae
,
π

ae
] (3.1.7)

Now in the continuum case where the lattice spacing goes to zero, this becomes the exponent of the action
of a charged particle moving an infinitesimal distance and can be thought of a connection between two
infinitesimally close points (see, for example, [5] Chapter 82). However, for finite a, we see that Aµ takes
values within a compact interval. For this reason, along with historical reasons, this theory is known as
Compact QED. As we will see, it also lives up to its name in its U(1) gauge invariance. If we think of
Uµ(x) as being a link between points x and x+ µ̂, and U∗µ(x) as the link between points x+ µ̂ and x (i.e.
moving in the opposite direction), then we can define a plaquette in a similar fashion as in the Z2 theory:

pµν(x) = Uµ(x)Uν(x+ µ̂)U∗µ(x+ ν̂)U∗ν (x) + c.c. (3.1.8)

where we have added in the complex conjugate to keep the plaquette value real. A visual interpretation
is presented in Figure 2. Further, we notice that the value of the plaquette is invariant under the U(1)
gauge transformation Uµ(x) → eiθ(x)Uµ(x)e−iθ(x+µ̂), with θ any locally valued function that takes maps a
point on the lattice to the real numbers. Now we define the Euclidean action, which takes the place of a
Hamiltonian, along with the partition function and probability for a particular configuration:

S({Uµ(x)}) = −β
2

∑
x, µ<ν

pµν(x) ≡ S[U ]

Z =
∑
{Uµ}

e−S[U ]

P [{Uµ}] =
1

Z
e−S[U ] ≡ P [U ]

(3.1.9)
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Figure 2: A rendition of the plaquette in the µ-ν plane, using specifically the notation of equation 3.1.8.
While matter fields have values on the points of the lattice (i.e. the space of all matter fields with values
in the field F on a lattice with V vertices is FV ), the gauge fields are links that live on the edges between
these vertices (the space of all gauge fields valued in the group G on a lattice with E edges is GE). As in
the figure, one can think of a link variable and its complex conjugate as existing on the same edge but
running in different directions. Then the plaquette is simply the clockwise, unit distance circulation of the
links added to its counterclockwise analogue. In the figure, this is the product of the inner set of arrows
plus the product of the outer set of arrows. The gauge contribution to the action over the entire lattice is
then simply the sum of the plaquette values at each point.

Notice that we can expand Uµ(x) = 1 + iaAµ(x)− a2A2
µ(x) +O(a3) to see that

pµν(x) ' (1 + iaeAµ(x)− a2e2A2
µ(x)/2)(1 + iaeAν(x+ µ̂)− a2e2A2

ν(x+ µ̂)/2)
×(1− iaeAµ(x+ ν̂)− a2e2A2

µ(x+ ν̂)/2)(1− iaeAν(x)− a2e2A2
ν(x)/2) + c.c.

= 1− a2e2/2
(
A2
µ(x) + A2

ν(x+ µ̂) + A2
µ(x+ ν̂) + A2

ν(x) + 2[ −Aµ(x)Aν(x+ µ̂)
+Aµ(x)Aµ(x+ ν̂) + Aµ(x)Aν(x) + Aν(x+ µ̂)Aµ(x+ ν̂)+
Aν(x+ µ̂)Aν(x)− Aµ(x+ ν̂)Aν(x) ]

)
+ c.c.

where the terms linear in a are canceled by their complex conjugates. This was quite the mouthful, but
dropping the constant term leads us to the simple result, in the continuum limit

pµν(x) = −a4e2
(Aν(x+ µ̂)− Aν(x)

a
− Aµ(x+ ν̂)− Aµ(x)

a

)2

= −a4e2(∂µAµ(x)− ∂νAµ(x))2 = −2a4e2F 2
µν

(3.1.10)

So that, if we identify β = 1/e2, we find the Euclidean version of the familiar action for QED

S = −β
2

∑
x, µ<ν

p(x)→
∫
d4x

1

4
FµνFµν (3.1.11)

In other words, this has produced the action of a pure Yang Mills theory in Euclidean signature. We can
also add matter fields into the lattice theory by adding in another term to the Euclidean action

Smatter = −
∑
x,µ

φ∗(x)Uµ(x)φ(x+ µ̂) + c.c.+
∑
x

(m2 + 2D)φ∗(x)φ(x) (3.1.12)

Which is, in general, known as the static quark potential for historical reasons. This term is also gauge
invariant under the transformation φ(x)→ eiθ(x)φ(x), with easily obtained non-abelian generalizations. In
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the limit of large mass for the “quarks”, one finds that this term becomes unimportant to leading order
in the discussion to follow, as field configurations with finite values for the quark fields become infinitely
suppressed in the path integral/partition function. We refer the interested reader again to the wonderfully
detailed and pedagogical treatment of Chapter 1 of the work by Greensite [15], and also to the discussion
in Section 2 of [16].

In order to proceed to the next section, we also provide the new form of the Wilson loop. Since we
associate Uµ as connecting x to x+ µ̂, and U∗µ as connecting x+ µ̂ to x, we define the Wilson loop as the
generalization of a holonomy of the gauge field exp(ie

∮
Aµdx

µ), which is simply

WC = (UUUUU · · ·UU)C (3.1.13)

where the subscript C denotes the closed contour or loop around which the connections run. For example,
a Wilson loop of unit area running in the x1-x2 plane with its left corner at point x could be written

W12 = U1(x)U2(x+ x̂1)U∗1 (x+ x̂2)U∗2 (x) (3.1.14)

One can notice that W12(x) + W ∗
12(x) = p12(x) is the plaquette value at x. Since the loop integral of the

gauge field around the plaquette can be read as the flux of the field strength tensor across the surface
defined by the plaquette using Stokes’ theorem, we see in the same terms that the Euclidean action can
also be read as the sum of fluxes of the field strength across all possible surfaces (both spacelike and
timelike). This can similarly be transformed using the lattice expression of Stokes’ theorem into the sum
of fluxes through each possible plane, or the holonomy of the gauge field across every ’straight’ loop on
the boundary of the space. This argument has some caveats if one imposes periodic boundary conditions
as is common for the sake of computation, but can be useful for visualization.

3.2 Confinement and the Use of the Wilson Line

What does all of this have to do with our previous discussion? It turns out that one can show the
existence of confinement computationally using our intuition for abelian Higgs models. In particular, we
notice that one can associate the string solutions discussed in Section 2.3 with a string connecting two
static monopoles. In our formal discussion these would be located at infinity, but one can imagine placing
them elsewhere and still getting confined field configurations where the electromagnetic field is located
within the string connecting the monopoles. These monopoles are the matter content of our theory, and
can be taken to be fairly massive (Mmonopole ∼ 1

e
as in Section 1, and so in the limit of a perturbatively

small fine structure constant, M is very large) and so we can ignore them in the functional integral and
use them simply as sources for the string configuration.

In particular, putting this on the lattice, we can create a gauge invariant operator that creates a
particle-antiparticle pair at time t separated in the i direction by a distance R:

Qt = φ(0, t)Ui(0, t)Ui(̂i, t) · · ·Ui((R− 1)̂i, t)φ(Rî, t) (3.2.1)

In the large mass limit, one finds that this is related to the value of the Wilson line through

〈Q∗TQ0〉 ∼ 〈UUU · · ·UU〉C = W (R) (3.2.2)

Where W (R) is the Wilson loop with spatial width R and temporal width T; of course, this distinction
is meaningless in the Euclidean version of the calculation but is useful to paint a physical picture. We
have used here the same definition of the Wilson line as in 3.1.13, and taken the expectation value in the
vacuum state. One can further relate this to the energy of the particle-antiparticle configuration via

〈Q∗TQ0〉 =
∑
n,m

〈0|Q∗0|n〉〈n|e−HT |m〉〈m|Q0|0〉
〈0|e−HT |0〉

=
∑
n

|cn|2e−∆EnT → e−∆EminT (3.2.3)
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Where we have used the imaginary time formalism, and ∆En is the energy of the nth energy eigenstate
relative to the vacuum, and in the last step we have taken the limit T →∞, so only the smallest energy
state with energy ∆Emin = V (R) will contribute to this sum. Then one can relate the expectation value
of the Wilson line to the energy it takes to create a particle-antiparticle pair, separate them a distance R
for a time T, and then annihilate them (in principle, exactly canceling the energy taken to create them):

W (R) ∼ e−V (R)T in the limit T→∞ (3.2.4)

For confining theories, the potential depends linearly on the distance between the quarks: V (R) ∼ σR,
and so we see that the value of the Wilson loop for large times or for small temperatures should fall off
exponentially with the area. In other words, W (R) ∼ e−σRT = e−σA(C), where A(C) is the area enclosed
by the contour made by the Wilson loop, for confining theories.

3.3 Simulation in 1+1 Dimensions

We now use the concepts that we’ve built in Sections 3.1 and 3.2. This is a homemade simulation, and does
not reach the level of precision that is touched by any modern paper on simulations of U(1) theories on the
lattice. The author has some favorites that visualize the existing data quite beautifully: [13] demonstrates
how a lattice calculation can show the existence of confining and Higgs phases (and much more) in a U(1)
Higgs model, while [14] demonstrates the existence of confinement in SU(3)color theories with delightful
graphics. While not directly related to the bulk of the ideas in this document, the second provides a
numerical demonstration of one of the biggest conceptual open questions in modern high energy physics:
the existence of confinement in non-abelian gauge theories. With that brief introduction, let’s jump into
the details of the calculation.

In implementing our lattice simulation, we use what is known in the literature as the Metropolis
Algorithm to properly weight field configurations and numerically compute the partition function. In
particular, we use the following steps

1. Create a lattice (in our case, with periodic boundary conditions) and set the link value in every
direction at every point to a random, valid value (e.g Aµ(x) ∈ [− π

ae
, π
ae

]).

2. For some number of enumerations, sweep through every point and every direction in the lattice and
repeat the following process (referred to as "smoothing" the lattice)

(a) Propose a change to the value of the link value at the point/direction.
(b) If the Euclidean action of the lattice decreases as a result, make the change.
(c) Otherwise, make the change with probability e−∆S, with ∆S > 0 the change in Euclidean action

generated by the proposed change.

3. Make as many lattices as you want/can in this way. One can thus calculate the expectation value of
a desired observable with the proper probability weighting for field configurations (with the proper
computing power).

As discussed, computing the lowest energy states with Wilson loops becomes more valid as we perform
calculations with Wilson loops of greater temporal width, or alternatively with Wilson loops at lower
temperatures as suggested by the imaginary time formalism.

Using these steps, we perform calculations of Wilson loops of different areas to demonstrate confine-
ment. For the sake of computational efficiency, we do so in 1+1 Dimensions. We summarize our results
in Figure 3, with the discrete path integral (and taking the real part)

〈W 〉C ≡
∑
{U}Re(WC)e−S[{U}]∑

{U} e
−S[{U}] (3.3.1)
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where the subscript C denotes the contour on which the Wilson loop lies, as usual.

Figure 3: Expectation value of the Wilson loop calculated on the lattice as a function of the inverse
temperature and area of the Wilson loop. Area is given in units of the lattice unit area, and the Euclidean
‘inverse temperature’ β = 1

e2
, is related to the inverse square of the electromagnetic coupling. 〈W 〉 is

unitless. The data is calculated on 15×15 lattices, averaging over 400 lattices each smoothed 40 times.
No exponential area law emerges in our calculation for the Wilson loop, and we are hence unable to find
confinement. Further discussion can be found in the analysis.

Analysis

The data we collected is presented in Figure 3, and was calculated on 15×15 lattices, smoothed 40 times,
and averaged over 400 lattices. The arbitrary ’timelike’ direction of the Wilson loop was held constant
at 10 times the lattice spacing. We see explicitly that there is no way to cast the data as an exponential
falloff, and rather that the Wilson loop expectation value has noisy behavior around zero.

Hence, we do not see the emergence of any area law behavior for the Wilson loop. While this does mean
that we have inconclusive results in our numerical search for confinement, we may now speculate that one
of several causes contributed to our inability to reproduce the expected result. The size of our lattice
and the precision of our computation is likely lower than necessary to recreate evidence of confinement.
Further, the homemade calculation we performed likely did not capitalize on possible tricks to enhance
computational efficiency or more accurately reproduce the probabilities of physical field configurations,
and the 10 unit length of our Wilson loops in the timelike direction may not have been sufficient to isolate
the lowest energy field configurations. This would contribute ‘impurities’ to the calculation, in that we
consider higher energy configurations that will cause damp the Wilson loop further and make it impossible
to find confinement without a larger lattice. Additionally, it is possible that there is exponential falloff of
the Wilson loop, but it occurs at some fraction of the total lattice size, further motivating us to work on
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a calculation that is able to produce larger lattices in reasonable time. Finally, it is possible that we need
to go to lower temperatures to access the right behavior of the wilson lines. However, as one can note in
figures 3 and 4, as we go to low temperature the calculation becomes more and more volatile; we believe
the sharp variation of the plot is not a feature of the process of the simulation but rather of the statistical
nature of our data. In particular, running the same process again yields similarly sharp peaks in entirely
different locations. Hence, our next steps should include improving the efficiency of our calculations from
the current, insufficient simulation.

Figure 4: Simulated values with error bars for β = .001 and β = 1. The error bars shown are the usual
statistical errors associated with random number generation, σMC = σ√

N
with σMC the error associated

with random number generation and σ the variance in the statistical data. The error bars contribute
negligibly to the data, as we average over 400 field configurations. It is true that there is in principle some
contribution to the error from the finite ‘smoothness’ of our field configurations, which we neglect here.

For completeness, we include also a plot at low and high β with Monte Carlo error bars, shown in figure
4. The error bars shown display the error σMC = σ√

N
with σMC the error associated with random number

generation, σ the variance in the statistical data, and N = 400 the number of lattices over which we
average. We ignore any contribution to the error from the finite ‘smoothness’ of our lattice configurations.
They suggest that the usual error associated with random number generation is not enough to account for
the discrepancy of our data and the confinement we expect to occur. This suggests that we indeed must
take our lattice to be larger, have a longer ‘timelike’ direction for our Wilson loop, ‘smooth’ our lattice
configurations more thoroughly, or a combination of the three.

Regardless of our inability to reproduce confinement, we have gained in the realm of experience with
and appreciation for the principles behind confinement and the intricacy and beauty behind putting our
ideas on a spacetime lattice.
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4 Concluding Thoughts
We have thus provided a (very) introductory discussion of monopoles, solitons, and confinement, focusing
on abelian Higgs type models but also exploring monopole-type solitons in simple non-abelian cases and
confinement on the lattice. We discussed why we know confinement to occur in 2+1 dimensions in the
language of Polyakov’s 1977 proof, and performed lattice simulations in 1+1 dimensions to search for
confinement computationally. Ultimately, we were unable to generate statistical results demonstrating
confinement in a simple U(1) theory in 1+1 dimensions, but we narrowed down some of the factors that
could be changed to continue our search in the case of greater computing power.

Of course, confinement in higher dimensions is not yet fully understood. As such, we develop this
extremely brief review in order to increase our own understanding and consolidate several ideas in one
place. That said, there are many places to go from here. One can focus on the lattice side of things. Perhaps
there’s a hope that one can design a calculation for gauge theories on the lattice that will demonstrate
confinement in a more enlightening way or efficient than we have already discovered, maybe even with
some form of quantum computing. Regardless, there are many more ways to explore the problem of
confinement in QFT, many of which are detailed in [15], and exploring these will be a logical next step.
Another interesting point of study we are currently pursuing regards so-called "p-form" symmetries and
generalized global symmetries, as discussed in a variety of striking papers, including [17], [18], and [19], and
such lectures as [20]. Related to these higher form symmetries are higher dimensional extended objects,
analogues of the Wilson lines discussed in the document. Exploration of the theory and phenomenology
of higher form symmetries seems like a connected and interesting next step, though it is a bit of a leap
from the ideas contained within this review.
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